Archivos para las entradas con etiqueta: tejado

El muro de fachada ideal

 

Un muro de fachada es una pared que separa el ambiente interior confortable de atmósfera exterior. Para ser ideal térmicamente, debe participar en el confort interior en cualquier época del año. Este último factor es crucial. El confort no se puede asegurar por igual en invierno, cuando la temperatura exterior es fría, y en verano, cuando hace calor, porque el clima es así por el hecho de que las variaciones diarias de temperaturas son muy diferentes.

El ideal térmicamente deberá, además, combinarse estrechamente con soluciones eficaces sobre los planos estructurales y financieros.

 

Funcionamiento de los muros exteriores en invierno

Durante los días de invierno, las diferencias de temperatura diarias exteriores, incluso entre el día y la noche, son relativamente bajas. Para mantener, diariamente, una temperatura interior confortable y prácticamente constante, es suficiente con prever muros cuya calidad de aislamiento térmico reduce la pérdida de calor que se puedan producir, en los días más fríos, por el sistema de calefacción.

 

En las casas pasivas calentadas por una red de doble flujo, los límites de calentamiento por el aire implican que la potencia de calentamiento no pueda exceder de 10Wu/m²Shab. Para no sobrepasar este límite físico, todas las paredes, por consiguiente los muros de fachada, serán optimizadas de manera conjunta.

 

Entre las propiedades térmicas de los materiales, es la calidad del aislante, definida por el coeficiente de conductividad λ y su espesor, los que permiten lograr este objetivo.

 

Funcionamiento de los muros exteriores en verano

Durante los días de verano, las diferencias en las temperaturas diarias exteriores pueden ser muy altas, mucho más que en invierno. El efecto de la luz directa del sol en los muros de los edificios puede causar altas temperaturas en su superficie que pueden superar los 70 ° C. Es, por ejemplo, el caso de las tejas que pueden alcanzar y superar los 85 ° C, a pleno sol, mientras que su temperatura puede bajar por debajo de 15 ° C en las noches sin nubes, durante las cuales, los tejados irradian toda su energía al exterior.

Incluso si se logra la compacidad de los edificios y la arquitectura con parasoles eficientes; si el aislamiento protege también en verano; si la ventilación de doble flujo reduce las entradas de aire caliente durante el día; si la ventilación natural funciona durante la noche, el riesgo de sobrecalentamiento es importante cuando la inercia térmica es muy baja.

La comprensión de la inercia térmica es esencial para asegurar el confort de verano y la estabilización de temperaturas diurnas y nocturnas. La producción continua de calor interno, dañino en esta época del año, implica una gran inercia por absorción[1] tanto de las partes internas de los muros de la fachada como de las otras paredes del edificio. El recalentamiento de los muros expuestos al sol requiere una gran inercia por transmisión.

 

El funcionamiento de los muros exteriores en cualquier época.

Proporcionar confort durante todo el año con un mínimo de energía, requiere muros de aislamiento optimizado para el invierno y muros con gran inercia por transmisión y absorción en el verano. El muro térmicamente ideal es aquella que mejor satisface todas estas características con la menor inversión posible.

El conocimiento de las cualidades térmicas comparadas de los materiales de construcción es esencial. Por encima de todo, es fundamental tener en cuenta, que no puede existir, físicamente, un material que tenga, conjuntamente, una gran inercia por transmisión y una gran inercia por absorción mientras que los muros de fachadas deben satisfacer simultáneamente ambos requisitos para participar en el confort de verano.

 

Los muros más eficaces no pueden, por consiguiente, formarse más que con dos materiales diferentes. Los materiales situados en el interior del edificio tendrán una máxima inercia por absorción para alisar las variaciones de temperaturas interiores no deseadas, incluyendo los picos de temperatura diurna. El del exterior tendrá que jugar el otro papel. Deberá tener una gran inercia por transmisión para ralentizar al máximo el flujo de paso del calor. Un aumento repentino de la temperatura debido a la luz solar será ralentizado en gran medida, y una parte de la energía se irá incluso hacia fuera cuando los rayos directos del sol han cambiado de dirección.

Reducir la velocidad de flujo de calor no es suficiente en invierno. Durante esta temporada, también es necesario reducir la cantidad de calor que pasa a través de los muros con el fin de lograr construcciones eficientes.

Al menos, uno de los dos materiales debe ser aislante. Para que un material interior tenga una buena inercia por absorción, y juega su papel de esponja térmica en los picos de temperatura, debe ser capaz de almacenar y liberar, rápida y fácilmente, cantidades significativas de calor. Debe ser conductor y voluminoso, como los materiales de albañilería tradicionales que puedan, además, proporcionar un papel estructura de apoyo. Esta característica térmica es contraria a la necesidad de aislamiento que debe ser proporcionado por el material exterior. Afortunadamente, las propiedades térmicas comparadas de los materiales muestran que estos son algunos de los mejores que tienen la mejor inercia por transmisión.

El muro de fachada ideal

La naturaleza nos impone su ley. Todas las características físicas del material se combinan para ofrecer lo mejor: el muro ideal está necesariamente compuesto por dos materiales: un muro interior de soporte con una gran inercia por absorción, y un aislante exterior con una gran inercia por transmisión, sin interés estructural pero que, además de su función térmica, protege el material interior de los choques térmicos.

Las propiedades térmicas comparadas de los materiales muestran que el aislamiento exterior ideal son las fibras de madera y que el muro interior de soporte más eficiente sería el cobre. Este muro es ideal sólo desde el punto de vista térmico. Desde el punto de vista tanto financiero como ecológico, es totalmente irreal. Un muro ecológico y térmicamente perfecto, especialmente para una casa pasiva, podría estar constituida de adobe en el lado interior con un aislamiento optimizado de fibras de madera en el lado exterior. Un revestimiento de madera clara ventilado permitiría mejorar aún más el resultado estival evitando el sobrecalentamiento de las caras soleadas.

 

Desde un punto de vista financiero, el muro ideal está rara vez por encima y la elección será necesariamente un compromiso precio/calidad permitiendo el cumplimiento de los presupuestos disponibles. Esta es la única condición en las que las casas pasivas puedan extenderse.

 

Los muros de fachada son sólo una parte de un edificio. Las conclusiones anteriores serían las mismas para el suelo que para el tejado. Al igual que con todas las otras características de una casa pasiva, el principio de compensación debe ser empleado. Una gran inercia por transmisión de las fachadas compensa, en parte, una baja inercia por absorción. Un suelo o tabiques con gran inercia por absorción pueden hacer lo mismo.

 

En resumen:

  • Un muro térmicamente eficiente esta necesariamente formada por dos materiales diferentes.
  • Un muro de carga con gran inercia por absorción debe estar ubicado en el interior.
  • Un aislamiento de gran inercia por transmisión debe estar situado en el exterior.
  • El espesor del aislamiento debe estar determinado y optimizado por cálculos térmicos.

 

Muro de fachada ideal - Madera Estructural

Muro de fachada ideal – Madera Estructural

 

 

[1] Cuando aumenta la temperatura interior, la pared absorbe calor hasta establecer una situación de equilibrio con el aire. Inversamente, cuando la temperatura interior baja, las paredes liberan el calor acumulado hasta obtener una nueva situación de equilibrio. Esto lo notamos en las bodegas subterráneas o en la planta baja de una casa antigua con mampostería de piedra.

En el anterior sándwich XPS vimos que no cumplía el CTE porque no había un aislamiento acústico.

En el Sándwich XPS + aislamiento acústico tenemos el XPS y un aislamiento acústico como la lana de roca con una densidad de 70 kg/m³.

Las propiedades físicas del XPS son:

Densidad (kg/m³)

35

Calor específico c (J/kg.K)

1300-1500

Conductividad térmica λ (W/m°K)

0.034

Resistencia a la difusión del vapor de agua μ

120

Comportamiento al fuego según Euroclase

E

Desfase en horas, con un espesor de 15 cm

4,1

 

Las propiedades físicas de la lana de roca son:

Densidad (kg/m³)

70

Calor específico c (J/kg.K a 20°C)

840

Conductividad térmica λ (W/m°K)

0.034

Resistencia al  paso del  vapor  de agua μ

±1.3

Comportamiento al fuego según Euroclase

A1

Desfase en horas, con un espesor de 19 cm

4,3

 

 

La lana de roca se presenta en forma de panel rígido.

El esquema de este sándwich es el siguiente:

1º.- Entarimado de pino Norte de 22 mm de espesor.

2º.- Una membrana de freno de vapor con sd = 2,3, en aquellos casos en que sea necesario.

3º.- Aislamiento de XPS con un espesor de 50 mm.

4º.- Rastreles horizontales de 50 x 50 mm, paralelos al alero.

5º.- Aislamiento de lana de roca de 50 mm de espesor, cuyos paneles se colocan paralelos al alero.

6º.- Rastreles verticales de 30 x 40 mm.

7º.-  Membrana impermeable y transpirable tipo Tyvek, con un sd=0,02.

El freno de vapor tiene la función de que el vapor de agua que provenga del interior de la edificación no haga disminuir las propiedades aislantes de la lana de roca.

El aislamiento de lana de roca se coloca entre rastreles de 50 x 50 mm. Y éstos se atornillan hasta los pares o correas de la estructura.

El aislamiento XPS se coloca como una piel continua, sin puentes térmicos. Para ello es conveniente que se coloquen dos capas que sumen el espesor requerido y, además, deben disponerse contrapeadas, para no hacer coincidir las juntas de una capa con las de la otra. Se mejora todavía más la continuidad del aislamiento si los cantos de los paneles tienen un perfilado en L o un machihembrado.

Sobre el aislamiento de lana de roca, atornillándose los rastreles de 30 x 40 mm a los rastreles de 50 x 50 mm.

Estos rastreles crean la cámara de ventilación. No obstante, el rastrel puede tener más altura si se desea una cámara más grande.

Luego se coloca la membrana sobre el aislamiento, disponiéndola encima de los rastreles verticales y dejándola holgada como formando valles entre aquéllos.

La transmitancia térmica U total de este sándwich es de 0,3296 W/m²k, inferior al límite de la zona E.

Haciendo la comprobación de condensaciones intersticiales con el programa WUFI (Wärme und Feuchte instationär), no las hay. Se ha considerado una temperatura interior de 20° C, con una humedad relativa del 50 % del aire, y una exterior de -10° C, con una humedad relativa del 80 % del aire.

Con este sándwich se consigue un desfase térmico de 5,5 horas en cuanto a la protección contra el calor estival.

 

Desde el punto de vista de estos dos aislamientos, se muestran los pros y contras:

Pros:

  • La lana de roca es un muy buen aislamiento térmico y de medio a buen aislamiento acústico, no es hidrófilo y es imputrescible, inerte e incombustible.
  • La lana de roca es muy permeable al vapor de agua pero no es capilar.
  • La lana de roca no es combustible.
  • La lana de roca procede de recursos no renovables pero abundantes.
  • Ambos materiales tienen una alta resistencia mecánica.
  • El XPS tiene una muy buena durabilidad y estabilidad dimensional.

Contras:

  • El XPS no es ecológico.
  • El XPS es tóxico en caso de incendio.
  • El XPS  y la lana de roca  no tienen ninguna capacidad higroscópica.
  • EL XPS electroestático.
  • El XPS no es transpirable y no capilar.
  • EL XPS tiene una muy débil capacidad de protección contra el calor.
  • El XPS es atacable por los roedores.
  • La lana de roca de débil densidad es fácilmente degradable por los roedores.
  • La lana de roca tiene una mala estabilidad en el tiempo.
  • La lana de roca tiene una contribución mediocre para el confort en verano salvo para las de altas densidades.
  • La eficiencia de la lana de roca se degrada en presencia de la humedad a causa de una puesta en obra negligente.
  • La lana de roca tiene un mal balance del carbono y energía gris elevada.

Finalmente, se exponen las ventajas e inconvenientes de este sándwich:

Ventajas:

  • La baja absorción de agua y la resistencia al hielo-deshielo (para evitar pérdidas de resistencia mecánica) del XPS lo hacen ideal ya que el aislante se encuentra debajo de la teja. Entonces, es un punto a favor para hacer una cubierta invertida, ya que hay versiones especiales de paneles para recibir directamente, con adhesivos especiales, las tejas cerámicas.
  • Muy buena relación entre aislamiento térmico-acústico y precio.
  • Los tirafondos que atornillan los rastreles de 50 x 50 mm pueden ser más cortos y más baratos, de 6 x 180 mm, al contrario que sucede con un sándwich de piel continua de espesor elevado.

 

Inconvenientes:

  • Por la lana de roca, se necesita la presencia de una barrera de vapor o freno de vapor, si es necesario.
  • Los dos aislamientos no son eficaces en la protección contra el calor.
  • Hay un puente acústico.

 

El principal inconveniente es la protección contra el calor de ambos aislantes debido a una característica poco conocida: la capacidad de acumulación, que mide la aptitud del material en atenuar las diferencias extremas en función del ritmo día/noche. Es decir, estos aislantes presentan un mal desfase térmico, lo cual restituyen el calor más pronto hacia el interior de la vivienda favoreciendo los picos de calor en verano (interior más caluroso).

El otro inconveniente es el puente acústico que crea el rastrel de 50 x 50 mm porque pone en contacto el XPS con el entarimado. La solución es colocar la lana de roca como una piel continua de menos espesor, pero con el espesor suficiente para el aislamiento acústico de la cubierta. Entonces, el espesor del aislante XPS será mayor. No obstante, hay que hacer un cuidadoso estudio de la eficiencia térmica y acústica de este sándwich. Otra solución, es adherir a la cara inferior de los rastreles bandas de un aislante como el corcho, fieltro de cáñamo, etc.

 

Todo esto nos lleva al siguiente sándwich de cubierta in situ: lana de roca de doble densidad en un próximo post.

 

Puede ver la simulación 3d clicando en este enlace:

https://skfb.ly/zvxF

Para manejar el dibujo 3D, he aquí unas sencillas instrucciones para manejarlo con el ratón:

  1. Pulsando continuamente el botón izquierdo y arrastrando, gira el dibujo en todas las direcciones,
  2. Pulsando continuamente el botón derecho y arrastrando, desplaza el dibujo en todas las direcciones,
  3. Moviendo la rueda del ratón hacia arriba o abajo, se hace zoom más o menos.

 

Madera Estructural® inicia con este post una sucesión de análisis de sándwich in situ de cubierta ventilada, desde la más sencilla hasta la  más complicada, sean habituales o eficientes. A cada sándwich se le pondrá una denominación para distinguirlo de los otros.

Primeramente, establecemos unas hipótesis o elementos de partida:

·         Partiendo de que la hipotética cubierta estuviese localizada en León, la zona climatológica de invierno, según el Código Técnico (CTE), es la E. Precisamente ésta es la zona con más exigencias de aislamiento térmico, y cuyo valor límite U de transmitancia térmica es 0,35 W/m²k.

·         Partimos, además, de que sobre la estructura de madera se colocará un cerramiento compuesto de un entarimado de tablas machihembradas de 22 mm de espesor de pino nórdico (pinus sylvestris). Entonces, si el coeficiente de conductividad térmica del pino macizo es de 0,15 W/m°K, la resistencia térmica K es de 0,1467 W/m²k.

·         También consideraremos una cámara de aire de 2 cm de espesor, formada por los rastreles verticales sobre la impermeabilización, cuya resistencia térmica K es de 0,085 W/m²k.

·         Entonces, el sándwich tendrá el siguiente esquema, empezando desde el lado interno del tejado:

1.      pares de la estructura,

2.      el cerramiento o entarimado,

3.      una barrera de vapor o membrana impermeable, si es necesario,

4.      el aislamiento,

5.      un soporte para la impermeabilización, si es necesario,

6.      impermeabilización, si es necesario,

7.      una cámara ventilada,

8.      y una cobertura de teja o pizarra.

 

Es un aislamiento por el exterior de la estructura (en Francia lo llaman sistema Sarking). Esto tiene sus ventajas:

                       conserva el aspecto estético de la estructura del tejado,

                       tiene menos puentes térmicos,

                       mejor aislamiento térmico y acústico,

                       y se aprovecha más el espacio interior,

Pero el inconveniente es que hay que levantar la cubierta en caso de reforma.

 

 

El sándwich XPS:

 

Empezamos con el Sándwich XPS, así denominado por el acrónimo del aislamiento, que es el poliestireno extruido.

 

Las propiedades físicas de este material son:

 

 

Densidad (kg/m³)

35

Calor específico c (J/kg.K)

1300-1500

Conductividad térmica λ (W/m°K)

0.034

Resistencia a la difusión del vapor μ

120

Comportamiento al fuego EN 13 501-1

E

Desfase en horas, con un espesor de 15 cm

4,1

 

 

El esquema de este sándwich es el siguiente:

1º.- Entarimado de 22 mm de espesor.

2º.- Para-vapor con un sd = 2,3.

3º.- Aislamiento XPS con un espesor de 100 mm.

4º.-  Membrana impermeable y transpirable tipo Tyvek, con un sd = 0,02.

5º.- Cámara de aire ventilada de 3 cm, creada por los rastreles de 30 x 40 mm.

 

El aislamiento se coloca como una piel continua, sin puentes térmicos. Para ello es conveniente que se coloquen dos capas que sumen el espesor requerido y, además, deben disponerse contrapeadas, para no hacer coincidir las juntas de una capa con las de la otra. Se mejora todavía más la continuidad del aislamiento si los cantos de los paneles tienen un perfilado en L o un machihembrado.

Una cuestión importante es la disposición de la membrana impermeable puesto que, si se coloca debajo del aislamiento, resulta una cubierta invertida. Es interesante porque así el impermeabilizante no sufre las tensiones de la cubierta ni los cambios bruscos de temperatura que con el tiempo terminan por deteriorarlo. No obstante, obliga a tener un cuidado especial al diseñar el remate perimetral de aleros para evacuar el agua infiltrada accidentalmente a través de la cobertura. Lo habitual es colocar la membrana sobre el aislamiento, disponiéndola encima de los rastreles verticales y dejándola holgada como formando valles entre aquéllos.

Y, por último, se atornillan los rastreles llegando hasta la estructura de madera (pares, correas, etc.). Así se lastra el aislamiento, ya que éste es bastante ligero.

La transmitancia térmica U total de este sándwich es de 0,3269 W/m²k, inferior al límite de la zona E.

 Haciendo la comprobación de condensaciones intersticiales con el programa WUFI (Wärme und Feuchte instationär), no las hay. Se ha considerado una temperatura interior de 20° C, con una humedad relativa  50 % del aire, y una exterior de -10° C, con una humedad relativa del 80 % del aire.

Con este sándwich se consigue un desfase térmico de 5 horas en cuanto a la protección contra el calor estival.

 

Desde el punto de vista del aislamiento, se muestran los pros y contras:

Pros:

·         El XPS tiene una alta resistencia mecánica, muy buen durabilidad y estabilidad dimensional y es no higroscópico y no capilar.

 

Contras:

·         El XPS no es ecológico y difícilmente reciclable.

·         El XPS es tóxico en caso de incendio y sensible al fuego Euroclase E.

·         El XPS  tiene ninguna capacidad higroscópica.

·         EL XPS electroestático.

·         El XPS no es transpirable y no capilar.

·         EL XPS tiene una muy débil capacidad de protección contra el calor.

·         El XPS es atacable por los roedores.

 

Finalmente, se exponen las ventajas e inconvenientes de este sándwich:

Ventajas:

·         La baja absorción de agua y la resistencia al hielo-deshielo (para evitar pérdidas de resistencia mecánica) lo hacen ideal ya que el aislante se encuentra debajo de la teja. Entonces, es un punto a favor para hacer una cubierta invertida, ya que hay versiones especiales de paneles para recibir directamente, con adhesivos especiales, las tejas cerámicas.

·         Buena relación aislamiento-precio.

Inconvenientes:

·         Como el XPS no es un aislamiento acústico, por eso, este sándwich no cumplirá con el CTE al exigir aislamiento térmico y acústico.

·         Como tiene un mal desfase térmico (de 5 horas), no cumple con el ideal de un tejado que presente una fuerte inercia y un desfase comprendido entre 9 y 12 horas a fin de permitir una difusión bastante regular del calor en el día y de reducir los picos de calor en verano.

 

 

 

Puede ver la simulación 3d clicando en este enlace:

https://skfb.ly/ySRU

Para manejar el dibujo 3D, he aquí unas sencillas instrucciones para manejarlo con el ratón:

1.      Pulsando continuamente el botón izquierdo y arrastrando, gira el dibujo en todas las direcciones,

2.      Pulsando continuamente el botón derecho y arrastrando, desplaza el dibujo en todas las direcciones,

3.      Moviendo la rueda del ratón hacia arriba o abajo, se hace zoom más o menos.