Archivos para las entradas con etiqueta: fuego

La madera es un material de construcción natural: si se utiliza en los elementos de construcción, puede desempeñar funciones estructurales, funcionales y estéticas al mismo tiempo. El uso de la madera en la edificación, que se remonta a los tiempos más remotos, está experimentando ahora un período de fuerte expansión en virtud de la dimensión sostenible de los edificios de madera desde el punto de vista medioambiental, económico y social. Sin embargo, su uso como material de ingeniería requiere un desarrollo constante de la investigación teórica y experimental para responder adecuadamente a los problemas que ello implica. En los capítulos individuales escritos por expertos en diferentes campos, el libro pretende contribuir al conocimiento de la aplicación de la madera en la construcción.

Índice de capítulos:

  1. Grading of Low-Quality Wood for Use in Structural Elements.
  2. Wood Thermal Properties.
  3. A Finite Element Method Model for Large Strains Analysis of Timber.
  4. Flame-Retardant Systems Based on Alkoxysilanes for Wood Protection
  5. Wood-Boring Insect Control in Constructions by High Temperature and Microwaves.
  6. Exterior Wood Coatings.
  7. Wooden Reinforcement for Earth Constructions in the Castile Area of Spain.
  8. Wood-Reinforced Polymer Composites.
  9. Ductile Behavior of Timber Structures under Strong Dynamic Loads.
  10. Traditional Wooden Buildings in China.
  11. Experimental Analyses and Numerical Models of CLT Shear Walls under Cyclic Loading.

 

Referencia bibliográfica del libro:

Concu, Giovanna, editora, Wood in Civil Engineering, IntechOpen, 2017, 250 pp, ISBN: 978-953-51-2985-1.

 

En:

https://www.intechopen.com/books/wood-in-civil-engineering

En mayo comienza la temporada de vigilancia de incendios forestales y, tal como están las cosas en España, sólo toca esperar las próximas desgracias. Tras los dramáticos incendios forestales de California y, también, en estos últimos años en Galicia, Málaga y litoral mediterráneo, hay que prestar atención al impacto en el creciente número de casas de madera en España. Es imposible construir una casa totalmente a prueba de fuego, pero los investigadores se concentran ahora en hacer que las casas sean, al menos, resistentes al fuego. Tienen que hacerlo, porque el cambio climático está aumentando la intensidad de los incendios forestales en todo el mundo, poniendo en riesgo vigas y haciendas en la línea de fuego.

Es oportuno el estudio que el Insurance Institute for Business & Home Safety (IBHS), de EE. UU., informó en su post del pasado 12 de marzo. Concluyó que las brasas voladoras, que pueden volar hasta casi 10 km, causan el 90 % de los inicios de fuego en las viviendas durante los incendios forestales, y no por el frente principal de los mismos. Las ascuas pueden aterrizar en canalones y revestimientos y arder sin llama hasta 12 horas antes de que se inflamen. Es el resultado de que muchos propietarios no toman medidas preventivas para reducir el riesgo que representan las brasas voladoras.

Simularon un incendio forestal en un recinto de pruebas echando brasas sobre dos pequeñas casas adosadas. En una fue construida y ajardinada como una estructura resistente al fuego (fachada con tablas de fibrocemento, un mantillo de grava adyacente a la casa, vegetación ornamental a más de 1,52 metros) y, en la otra, con materiales habituales (fachada de madera de tejuelas) sin considerar la resistencia al fuego.

Durante el simulacro – Imagen de Diana Olick – CNBC

Después del simulacro – Imagen de Diana Olick – CNBC

La casa resistente al fuego no se quemó. La clave son las brasas voladoras que pueden volar kilómetros y aterrizar sobre restos vegetales, madera seca o materiales combustibles cerca o al lado de una vivienda o entrar a través de ventanas abiertas o rotas, rejillas de ventilación, iniciando un nuevo fuego en la vivienda, y en el vecindario.

La solución es el mantenimiento y los materiales. Así, el IBHS publicó una lista de “Las diez mejores maneras de proteger su propiedad de los incendios forestales“:

1. Mantener el espacio defendible (0 – 1,52 metros)

Use materiales no combustibles como grava, ladrillo u hormigón en esta área crítica adyacente a su casa.

  1. Reducir los riesgos del revestimiento de fachadas

Mantenga un espacio libre entre el suelo y el revestimiento de 15,24 cm, y considere un revestimiento no combustible.

[Se debe considerar 30 cm para una mejor protección de la madera contra las salpicaduras de agua de lluvia, o mejor más si la superficie del suelo es dura]

  1. Limpie los escombros del tejado

Remueva regularmente los escombros de su techo, ya que los escombros pueden inflamarse con las brasas sopladas por el viento.

  1. Use un tejado de clase A

 

Los productos para tejados con clasificación de Clase A (tejas asfálticas, tejas cerámicas, pizarras, paneles metálicos, etc.) ofrecen la mejor protección para los hogares.

  1. Limpie los canalones con regularidad

Mantenga los desechos fuera de los canalones, ya que los escombros pueden inflamarse con las brasas sopladas por el viento. Si se utilizan, el material de los canalones debe ser incombustible.

  1. Reducir los riesgos de las vallas

La quema de vallas puede generar brasas y causar un contacto directo de las llamas con la casa. Use vallas y puertas no combustibles.

  1. Mantenga las brasas fuera de los aleros y respiraderos

Use una malla de 3,2 cm para cubrir las rejillas de ventilación, y un alero abierto para crear un alero con sofito.

  1. Proteger ventanas

Use ventanas de vidrio templado de varios cristales y ciérrelas cuando exista la amenaza de un incendio forestal.

  1. Reduzca los riesgos del entarimado exterior

Como mínimo, use tablas de entarimado que cumplan con los requisitos de California para construcciones nuevas en áreas propensas a incendios forestales, retire los combustibles debajo del entarimado y mantenga un espacio defensivo efectivo.

  1. Mantenga un espacio defendible (1,52 – 9,14 metros)

Quite los arbustos debajo de los árboles, pode las ramas que sobresalen del tejado, los árboles delgados y elimine la vegetación muerta. Mueva los remolques/caravanas y cobertizos de almacenamiento del área, o construya un espacio defendible alrededor de estos.”

Los árboles de la zona de protección de la casa estarán podados en su primer tercio de altura, o 4,6 m.

Más información aquí.

Otra conclusión del estudio es que “el costo de muchos materiales de construcción no combustibles es igual o menor que el de los materiales típicos”. El ahorro está en el revestimiento de cemento, más barato que los materiales de madera. Esto compensa los aumentos de costos en los canalones y los respiraderos.

 

En investigaciones del IHBS relacionadas con las tarimas de madera al exterior, mostraron que las brasas, en su mayoría, se alojan entre los huecos de las tablas de la tarima y donde las tablas descansan sobre las vigas o rastreles. Las ascuas pueden acumularse y potencialmente encender las tarimas y las vigas combustibles. Las ascuas también pueden caer a través de huecos de tablas y aterrizar sobre materiales almacenados debajo de la cubierta. Es crítico remover todos los materiales combustibles bajo la tarima para minimizar la posibilidad de igniciones. Las pruebas de IBHS también mostraron que, incluso sin restos de vegetación entre los espacios de la tarima, las tarimas de madera blanda de densidad media, como la secuoya o el cedro rojo del Pacífico son vulnerables a las inflamaciones de brasas. La mayoría de los materiales compuestos de madera y plástico, junto con la madera dura tropical de mayor densidad y las tarimas tratadas con retardante son menos vulnerables a las brasas.

En otras investigaciones en EE. UU, las pruebas realizadas con productos de tarimas combustibles han demostrado que la mayoría de los productos no son altamente combustibles por sí mismos. Típicamente, otras fuentes de combustible contribuyen a incendios más grandes en la cubierta (escombros o material combustible almacenado debajo o encima de la tarima, o una tarima ubicada en una pendiente que contiene mucha vegetación combustible).

 

España

En España, las viviendas afectadas por los incendios forestales estaban, en general, cerca o inmersas en zonas boscosas.

Para las casas de madera que se han construido en estos últimos años no se les exige que la madera de la fachada cumpla con la Euroclase de reacción al fuego de B-s3,d2 (B: combustible con contribución muy limitada al fuego; s3: alta opacidad de los humos producidos; y d2: se producen caídas de gotas o partículas inflamadas en alto grado):

  • Ya que en el Documento Básico SI Seguridad en caso de incendio del Código Técnico de la Edificación (CTE), sección 2 Propagación exterior, capítulo Medianerías y fachadas, 4º párrafo, se deduce que: en toda fachada cuyo arranque, a nivel de rasante, esté en zona pública, los materiales de revestimiento que ocupen más del 10% de la zona de fachada situada a menos de 3,50 m de altura sobre la rasante exterior, debe ser B-s3, d2, incluso si el edificio tiene menos de 18 m de altura. Si la fachada está en zona pública o privada, y tiene más de 18 metros de altura, debe ser B-s3, d2.
  • Lo habitual es que son viviendas unifamiliares de una o dos plantas aisladas dentro de fincas privadas.

Aparte de esto, como toda vivienda unifamiliar, cumplirán con las normas del CTE en cuanto al fuego (estructura, muros y tejado).

Y con lo dispuesto sobre el “Entorno de los Edificios” del CTE DB SI, si la vivienda está en “zonas edificadas limítrofes o interiores a áreas forestales”:

“Debe haber una franja de 25 m de anchura separando la zona edificada de la forestal, libre de arbustos o vegetación que pueda propagar un incendio del área forestal, así como un camino perimetral de 5 m, que podrá estar incluido en la citada franja.”

 

Pero el problema es cuando la vivienda está situada en un municipio ubicado en una Zona Forestal de Alto Riesgo (ZAR) de incendios sin planificación en la lucha contra incendios forestales. Hoy en día, son muchos los municipios, el 80% de los situados en estas zonas, que no cuentan con planes locales de prevención de incendios, es decir, tan solo 5 de las 17 comunidades autónomas cuenta con Planes de Prevención de Incendios Forestales que, aún así, no llegan al aprobado.

Entonces, no hay normativa o disposiciones reglamentarias específicas que obliguen a los propietarios de edificios situados en la interfaz urbano-forestal para minimizar los principales factores de riesgo para la seguridad de las construcciones en situación de incendio forestal.

En el año 2016, se instaló en Francia la preocupación sobre cómo reducir los efectos de un incendio forestal en las casas de madera, como se explica en este postAquí están las actas de la ponencia de Olivier Gaujard: “Guide des pratiques constructives en zones à risque d’incendie de forêt. Incluant des techniques adaptées à la mise en œuvre des matériaux biosourcés.”

Países como Australia tiene su norma sobre Construcción de edificios en áreas propensas a incendios forestales (AS 3959-2009) y en Francia tienen sus Planes de Prevención contra los Riesgos de Incendio Forestal, tal como se explica aquí. Aquí hay una compilación de soluciones técnicas profesionales compatibles con la norma australiana.

Sección de una vivienda para cumplir con el nivel BA – FZ (Flame Zone), el más alto nivel de la norma australiana. Fíjense en el tablero resistente al fuego situados detrás del enrastrelado del revestimiento de la fachada.

En EE. UU, el International Wildland Urban Interface Building Code (IWUIC) y el California Building Code son los códigos de construcción más comúnmente referenciados para las áreas propensas a incendios forestales.

 

¿Mejorando el CTE?

Sea una casa de madera o no, cualquier edificación que tenga revestimientos, balaustradas, cerramientos ligeros, protecciones solares, etc. al exterior en madera y que esté inmersa en una ZAR, sería preciso que fuese obligatoria el uso de materiales derivados de la madera resistentes al fuego o la aplicación de un tratamiento que mejorase la reacción y/o la resistencia al fuego de la madera natural, mediante los siguientes procesos clásicos:

  • Un barniz ignífugo que, aplicado sobre la superficie, evita que   en   caso   de   incendio   la   llama   se propague. Mejora la reacción al fuego retardando la propagación del mismo. Los de base agua se pueden aplicar sobre lasures o imprimaciones en base agua con color. Se alcanza la Euroclase B-s1d0 (cumplen

sobradamente con el CTE que exige un requerimiento mínimo B-s3,d2).

  • Una impregnación con un producto retardante a alta presión en profundidad mediante autoclave, resistente a la lixiviación, seguido de un secado al horno y curado al calor. Como opción, hay empresas que aplican de fábrica una imprimación semitransparente en base agua, permeable al vapor, y con una gama de colores estándar y a medida.

Con este tratamientos de ignifugación mediante autoclaves se puede mejorar la su reacción al fuego de la madera hasta una Euroclase B-s1,d0.

  • O un barniz o pintura intumescente que mejora la resistencia al fuego de los elementos constructivos retardando el calentamiento al crear una espuma, que, al carbonizarse, se convierte en una capa aislante del calor.

También, establecer unas normas de diseño de edificios en ZAR de incendios forestales a semejanza de esas normas australianas, estadounidenses, etc.

 

En cuanto a las tarimas de madera al exterior, se explica aquí. En las viviendas, para tarimas de madera al exterior no se exige una clase de reacción al fuego. Para las tarimas de madera de coníferas, como les afecta más la abrasión, sólo se les aplicaría el proceso de la impregnación a alta presión. Es más, este proceso se puede aplicar a algunas maderas modificadas (Accoya con impregnación a presión con BurnBlock).

En las tarimas de madera composite o tecnológica (mezcla de madera y plástico, WPC), son mejores las tablas sólidas que las huecas (perfil extrusionado), ya que la propagación del fuego (fire spread) es más alta en una tabla hueca que en una sólida. Y los altos contenidos de madera mejoran el comportamiento del fuego de forma lineal.

No obstante, mediante la modificación de la superficie de la madera con tratamientos como Organowood, basado en tecnologías de silicatos, se usa tanto en fachadas como en tarimas al exterior. Se consigue una Euroclase de reacción al fuego de Cs1,d0 (EN13501-1). Se puede usar en maderas de coníferas tratadas en profundidad en autoclave para las clases de uso 4 contra pudriciones.

Aarhus Harbor Bath, en Dinamarca.

En cambio, algunos códigos de construcción, como el IWUIC prohíbe las tarimas combustibles con la excepción de las tarimas tratadas con retardadores de fuego (clasificadas para exposición al aire libre) y otros materiales que cumplan con los requisitos de un material resistente a la ignición (sí se puede con tarimas combustibles, pero con un tablero resistente al fuego fijado debajo de las viguetas de la tarima).

Es notable la aparición del Cedria barniz incoloro intumescente B-19, un barniz intumescente transparente en base agua, que además de aportar resistencia al fuego, de hasta 120 minutos, y poder proteger elementos estructurales de madera en interiores y exteriores, mejorará la reacción al fuego de ésta y permitirá obtener una buena clasificación según Euroclases. Y lo interesante es que se puede aplicar como capa final (topcoat) sobre imprimaciones en base agua con color.

Hay más información en el post “How to help fireproof your home before the next big wildfire“.

Y el programa Viviendo con fuego de la Universidad de Nevada tiene una función interactiva muy útil en su página web Be Ember Aware, que ilustra las muchas maneras en que las brasas pueden encender una casa.

  • La guía “Firefighting Awareness and Response Resources: An Introduction” (Recursos de respuesta y concienciación en la lucha contra los incendios: una introducción), aunque se ciñe a América del Norte, contiene enlaces a fuentes de información sobre el fuego en la industria de la construcción en madera.

“La industria de la construcción sigue siendo un sector económico en crecimiento en Canadá. Dentro de este mercado, varias partes interesadas están explorando los productos de construcción tradicionales, así como innovando con estos y otros productos. Numerosas jurisdicciones están explorando medidas de reforma que tienen el potencial de aumentar las oportunidades para que la industria maderera responda a varios desafíos y oportunidades económicos, de sostenibilidad, ambientales y de seguridad. Esta guía de recursos se enfoca en algunos de estos temas de seguridad al proporcionar enlaces a fuentes de información generales y más especializadas con respecto a varios factores de seguridad contra incendios relacionados con la construcción de edificios de madera.”

 

 

La investigación y desarrollo de las Calculadoras de Volumen de Madera (TVCs) se llevó a cabo para determinar la cantidad de madera utilizada en la construcción de estructuras de entramado ligero off-site, en comparación con la construcción tradicional con montantes in situ. Se ha usado un proyecto de vivienda mixta de cuatro pisos en la región de más rápido crecimiento en los EE.UU. para: 1) cuantificar el volumen total de madera del proyecto de entramado ligero con montantes in situ, y 2) compararlo con los métodos simulados de construcción modular y de paneles construidos en fábrica para la misma configuración de la vivienda. La construcción panelizada utilizó un 6,7% más de madera total y la construcción modular un 69,4% más que en el escenario de una vivienda tal y como fue construida (as-built). Una evaluación del ciclo de vida encontró que la construcción modular y panelizada almacena un 4,5% y un 32% más de CO2 equivalente que la construcción in situ con montantes. Se presentan los próximos pasos para evaluar los costos económicos de los sistemas construidos off-site.

Es un informe de pago.

 

“Originaria de Europa, la madera contralaminada (CLT) se utiliza cada vez más en la construcción residencial y no residencial en todo el mundo. Los métodos de gestión de la humedad se utilizan para proteger los edificios de CLT de la descomposición, y los tratamientos del suelo se utilizan para protegerlos contra las termitas. Sin embargo, es posible que se necesiten tratamientos protectores adicionales para algunas aplicaciones, o en mercados con riesgos severos de termitas. Dado el tamaño de los paneles CLT, el tratamiento convencional a presión no es factible. Se investigó un tratamiento penetrante aplicado en la superficie por su capacidad de penetrar en los paneles CLT. Las zonas tratadas resultantes eran superficiales y la penetración se consideró insuficiente para la protección contra la pudrición y las termitas. También se investigó la fabricación de CLT a partir de láminas tratadas a presión con adhesivos seleccionados. Las láminas tratadas con borato encoladas entre sí sin volver a cepillarse después del tratamiento tuvieron una adhesión menor que los controles no tratados. El trabajo futuro debería centrarse en el desarrollo de tratamientos de inmersión penetrantes más eficaces, o en la modificación de tratamientos o adhesivos para encolar eficazmente la madera preservada sin volver a cepillarla después del tratamiento. […]. “

Puede descargarse el informe bajo invitación de los autores.

 

Se estima que Canadá tiene suficientes bosques como para suministrar viviendas de madera para 1000 millones de personas.

 

 

En esta segunda parte, como continuación del anterior post, se hará una recopilación de las ideas-fuerza más interesantes que apuntalan el debate sobre la construcción con CLT, englobadas en las perspectivas siguientes: el fuego, la acústica, la economía, y el bienestar.

 

  • Fuego:

Imagen de Sebastian Popp

Ya se han realizados bastantes pruebas en el mundo, hasta ahora, en las que se ha demostrado las bondades del CLT como material resistente al fuego. Unos ejemplos:

  • En una demostración en Quebec, Canadá, en 2016, se construyó un compartimiento con paneles CLT de cinco capas protegidos con paneles de yeso y luego se prendió fuego. Incluso con temperaturas máximas de más de 1.100°C, el fuego fue contenido en el compartimiento y se quemó en dos horas, excepto por algunos carbones incandescentes.
  • Se ha probado que un forjado de 172 mm hecho de CLT de 5 capas tiene una resistencia al fuego de dos horas.
  • El equipo de Thomas Robinson, del estudio estadounidense de Lever Architecture, sometió a ensamblajes a rigurosas pruebas de fuego. Uno de ellos se componía de una viga, una columna y un panel CLT, que unidos, fueron colocados en un horno, y luego se pesaron con 25.000 libras, para ver qué tan fuertes serían después de la exposición al fuego y al calor. Dos horas después, emergieron carbonizados, pero estructuralmente intactos.

 

No todos han aceptado la idea de usar madera para construir estructuras más altas y son habituales las manifestaciones “interesadas” o tremendistas.

Pero Glen Corbett, profesor de ciencias del fuego en el John Jay College, Reino Unido, cree que la madera podría alimentar un infierno que los bomberos no pueden combatir, como el mortífero incendio de Grenfell en Londres, que escaló el revestimiento de aluminio del edificio. Al preguntársele si un edificio alto de madera podría arder en llamas como Grenfell, Corbett dijo: “Sí, porque una vez que está sobre el décimo o decimoquinto piso de un edificio, no hay manera de echarle agua. Es imparable básicamente“.

La National Ready Mixed Concrete Association de EE.UU lanzó en 2016 Build With Strength, una campaña que busca alertar sobre los peligros de construir estructuras más altas con cualquier tipo de madera o material combustible, argumentando que materiales como el hormigón y el acero son mucho más seguros. Algunos de los miembros de la coalición incluyen asociaciones de bomberos, departamentos locales de bomberos y la Steel Framing Industry Association. “A medida que Estados Unidos ha visto un aumento en la construcción de estructuras ligeras de madera, también ha habido un aumento en los incendios”, dice el portavoz de la campaña. “En cuanto al CLT, estos productos no han sido suficientemente probados. Hay muchos materiales mejores que la gente puede usar“, agrega.

Independientemente del material utilizado, menos del uno por ciento de los incendios ocurren durante la construcción. Muchos de los incendios que ocurren en edificios de apartamentos construidos con estructuras de entramado ligero ocurren antes de que el edificio haya sido terminado y cuando las características que limitan el fuego, como los sistemas de rociadores automáticos, todavía no están en su lugar. Los códigos de construcción requieren que todos los edificios -independientemente de los materiales utilizados para construirlos- estén al mismo nivel de seguridad. Una vez construido, no tiene las mismas vulnerabilidades.

 

Tal vez unas pruebas hechas en EE. UU pueden explicar mejor sobre el buen comportamiento del CLT frente al fuego.

En mayo y junio de 2017, los investigadores del Laboratorio de Productos Forestales del Servicio Forestal (FPL) recientemente completaron una serie de pruebas de fuego en cooperación con el American Wood Council, el Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF), y el Forest Service’s State and Private Forestry. Los investigadores recrearon cinco escenarios de incendio en un edificio de prueba de dos pisos a escala real construido usando CLT y los resultados fueron prometedores. Estas pruebas demuestran que es posible construir un edificio CLT resistente al fuego, incluso con CLT expuesto.

imagen de Kenneth Bland

El edificio de pruebas consistía en dos apartamentos idénticos de un dormitorio amueblado, construidos como si estuvieran en un edificio de apartamentos de varios pisos. Los escenarios probaron varios arreglos de CLT expuestos y no expuestos con puertas abiertas entre las áreas de estar y dormir.

  • Con la estructura de madera totalmente protegida por tableros de yeso, se detuvo un “gran incendio de muebles y contenido combustible” después de tres horas “sin carbonización significativa en las superficies de madera protegidas” del apartamento.
  • En otra prueba, algunas paredes de madera quedaron expuestas. Una vez que los muebles y el contenido del apartamento habían sido consumidos por el fuego, se formó una capa protectora de carbón formado en el CLT y el fuego quedó esencialmente auto extinguido.
  • Con todas las superficies de madera masiva dejadas al descubierto, un solo aspersor “fácilmente contenía” el fuego.
  • En una prueba relacionada, el fuego se dejó crecer durante 23 minutos antes de que se activara el sistema de rociadores, y “rápidamente controlaba el fuego“. Esta prueba final fue la más emocionante porque nadie sabía qué esperar con paredes y techos CLT completamente expuestos. No se habían realizado pruebas similares a esta escala antes, y los resultados resultaron ser bastante impresionantes. Las temperaturas se elevaron a unos 700 grados centígrados, pero una vez que se activaron los aspersores, bajaron a aproximadamente 50 grados centígrados en cuestión de minutos.
  • Finalmente, con aproximadamente el 30% de la superficie del techo CLT en el salón y el dormitorio expuestos, el fuego se apagó una vez que los muebles y el contenido de la habitación habían sido consumidos por el fuego. La madera subyacente fue protegida por una capa de carbón durante la prueba de cuatro horas.

imagen de Kenneth Bland

Una vez analizados los datos, los resultados se publicarán en un informe del FPL y se presentarán al Comité Ad Hoc sobre Tall Wood Buildings del International Code Council.

Los resultados de estas pruebas no sólo ayudarán a informar los códigos de construcción, sino que también proporcionarán información útil para las compañías de seguros, contribuirán a un modelado más preciso del comportamiento ante incendios y llevarán a una lucha contra incendios más segura en edificios CLT.

Véase un informe aquí.

Véase un video resumen de las pruebas.

 

Así que el CLT es “básicamente autoextinguible” ya que una gran parte de la madera es inherentemente resistente al fuego. Cuando los paneles de madera masiva, la capa exterior se quema y se carboniza, lo que aísla las capas internas[1] y evita que el núcleo se incendie e, incluso después de una hora de carbonización, todavía hay suficiente madera buena dentro de una sección transversal para soportar la carga de un edificio. Los elementos estructurales de un edificio están sobrediseñados para anticipar la formación de carbón y reducir la cantidad de madera disponible para llevar la carga.

 

¿Y cómo se comportan el acero y el hormigón ante el fuego? Durante un incendio, el acero puede elevarse rápidamente de temperatura y empezar a deformarse, y el hormigón puede saltar cuando la humedad atrapada se expande a medida que se convierte en vapor, causando que pedazos de hormigón exploten y salgan disparados.

 

Pongamos en perspectiva la prueba de los rociadores con diversos estudios:

Un estudio de 2016 de 42,700 incendios residenciales en Columbia Británica realizado por la Universidad del Valle de Fraser (UFV) entre 1988 y 2015 mostró que la mayoría de las muertes por incendios ocurrieron en edificios sin medidas adecuadas de seguridad contra incendios. El estudio examinó todos los tipos de ocupación residencial y encontró que el 85.4 por ciento de las muertes por incendio ocurrieron en edificios sin aspersores y alarmas de humo. Además, halló que los edificios con rociadores y detectores de humo en funcionamiento requerían menos intervención del departamento de bomberos y tenían más casos de incendio contenido en la habitación de origen (92 por ciento frente a 59.7 por ciento).

Esto confirmó los resultados de un estudio de investigación de 2014 de la UFV que demostró que los edificios de armazón de madera son tan seguros como los edificios de acero o de hormigón una vez que los sistemas de seguridad contra incendios están instalados. “Fire Outcomes in Residential Fires by Construction Type” examinó casi 12.000 incendios de edificios reportados en British Columbia entre 2008 y 2013 y no encontró muertes y tasas de lesiones similares por incendios en edificios con aspersores y alarmas de humo en funcionamiento, independientemente del tipo de construcción. La propagación del fuego también fue notablemente similar: la mayoría de los incendios en todos los tipos de construcción se limitaron a la habitación de origen.

 

El “método de sección reducida” es el método analítico más conocido en todo el mundo para evaluar la función portante de elementos de madera masiva expuestos al fuego (p. ej. vigas, columnas, forjados de suelo/techo, etc.). Para calcular la sección reducida se suele utilizar una tasa de carbonización lineal, prescrita en las correspondientes normas de diseño de la madera, junto con una capa de resistencia cero. Dado que se trata de un método basado en la mecánica y que varias pruebas han superado las 2 horas, teóricamente no hay justificación para limitar su aplicación a una resistencia estructural máxima al fuego (por ejemplo, 2 horas).

Además, algunos ensamblajes de edificios pueden requerir una función de separación (aislamiento e integridad) para proporcionar cierto nivel de compartimentación dentro de un edificio (es decir, celdas de fuego). Sin embargo, la función de separación de los ensamblajes de madera masiva no está tan bien documentada como su función portante. Por lo tanto, se deben dar consideraciones especiales para asegurar que estos ensamblajes también cumplan con sus funciones de separación, cuando sea necesario. Un número de pruebas de fuego en ensamblajes CLT demostraron una función de separación significativa, muy superior a 2 horas.

Por último, las conexiones entre elementos estructurales deben proporcionar una resistencia al fuego suficiente para que no se conviertan en los elementos críticos de un sistema estructural. Actualmente, el Eurocódigo 5: Parte 1-2 limita el procedimiento de diseño de las conexiones de madera a 60 minutos cuando se exponen a un incendio estándar. Uno puede suponer que cualquier conector metálico situado dentro de la sección transversal residual no se vería gravemente afectado por la degradación termomecánica y, por lo tanto, seguiría cumpliendo su función de soporte de carga. Sin embargo, se pueden encontrar muy pocos datos de prueba para la duración del fuego que exceda de 1 hora en la literatura. Es necesario racionalizar el diseño resistente al fuego de las conexiones para edificios altos de madera, que probablemente requerirían una resistencia al fuego de 90 y 120 minutos.

 

Hay un fuerte deseo de que la madera sea el motor estético en la arquitectura, por lo que la madera no combustible es un tema bastante interesante e importante. El deseo es exponer la madera, y dado los códigos de construcción, se tendría que colocar madera incombustible para conseguirlo. Por eso hay proyectos de edificios altos de madera en los que se investiga que es posible demostrar que se puede desarrollar un conjunto de madera que no sea combustible.

En lo que se refiere a la viabilidad de los conjuntos de madera masiva en general, ¿cuáles son las principales áreas de interés hoy en día?

  • Primera área: el rendimiento estructural durante un incendio (el edificio tiene suficiente madera en su estructura para sostenerse después del incendio),
  • y la capacidad de extinción de incendios dentro del edificio (el fuego afecta a la estructura, pero también debe ser combatido desde fuera y desde dentro).

¿Qué tipo de estrategias se están utilizando para ayudar a que la madera masiva sea resistente al fuego? Sistemas de alerta temprana, sistemas de rociadores contra incendios más redundantes, paneles de yeso e incluso hormigón ayudan a proteger la madera, dependiendo de la aplicación. En la construcción de muros exteriores, se puede limitar o eliminar los combustibles, ya que puede no ser un elemento portante en un edificio alto y, en ese caso, se pueden utilizar los tradicionales muros cortina.

La suposición es que se dejaría la madera carbonizada. Qué porción de la madera se espera que queme y qué cantidad de la misma está protegida por un material incombustible es la parte que requiere mucho análisis. Si se proporciona la misma duración de la protección incombustible tanto sobre un conjunto de madera masiva como en uno de acero, la madera masiva superará al acero porque, para el momento en que atraviesa esa misma cantidad de protección contra incendios, el edificio de madera no se calentará rápidamente y fallará, como el acero. En cambio, comenzará a arder lentamente.

 

Cuando se construía el edificio Brock Commons, los bomberos participaron en reuniones con los técnicos. Y surgió la pregunta: ¿qué pasa después de que el edificio esté ocupado? Una preocupación común era el potencial de cambios interiores que podrían comprometer la seguridad contra incendios del edificio en el futuro. “Es difícil seguir la pista de si van a crear problemas y cambiar las cosas por dentro. La preocupación, al avanzar, es que mantenga su integridad“, explica un capitán de bomberos. Los cambios en la construcción emprendidos sin obtener el permiso adecuado es un problema en muchas ciudades. “El hecho de que sea un propietario consistente [el propietario del edificio es la Universidad de Vancouver], que obviamente tiene el objetivo de asegurar que el edificio sea seguro, ayuda mucho en términos de la seguridad contra incendios general del edificio”.

 

 

[1] Bajo la capa carbonizada, la temperatura es muy poco influenciada (la madera queda casi “normal”). Para un panel de forjado de 175 mm (5 capas), su fallo ocurre a los 178 minutos, quedando una sección reducida efectiva de 89 mm. La temperatura del horno de prueba era de 1006 °C. La temperatura inicial de la cara no expuesta al fuego era de 20 °C y la temperatura final, tras la prueba, era de 30 °C. O sea, un aumento de 10 °C. Pruebas realizadas en Quebec, Canadá, por Forest Products Innovations.

 

  • Acústica:

El CLT tienen una desventaja: la acústica. Un panel CLT es significativamente más ligero que uno hecho de acero u hormigón, proporcionando un menor aislamiento acústico de impacto y ruidos aéreos. Esto es particularmente difícil para los desarrolladores que intentan construir cualquier tipo de vivienda multifamiliar, porque los códigos de construcción especifican cuánta separación acústica se necesita entre las unidades.

Los constructores de los mercados centroeuropeos a menudo cubren la madera para mejorar la acústica y/o la resistencia al fuego. Pero es todo un reto si se quiere exponer la estructura de CLT en los interiores, ya que el grosor y la densidad tienden a igualar un mejor aislamiento acústico.

Hay que confiar en algún tipo de combinación de masa y resiliencia para formar una barrera atenuante del sonido – algo masivo para bloquear los sonidos aéreos y algo flexible para absorber las pisadas.

En el edificio Framework  se optó por un diseño que recubría la estructura de madera con una fina capa de caucho y luego una gruesa (pero no muy gruesa) losa de hormigón ligero llamada Gyp-Crete, seguido por el piso terminado.

Forjado de CLT acústico

 

  • Economía:

El tiempo es igual a ahorros en costos “, dijo el arquitecto Michael Green al Journal. “Ahorro para financiar el proyecto a lo largo del tiempo, ahorro para gestionar la construcción a lo largo del tiempo, y una capacidad más rápida para ocupar el edificio”.

 

Hay divergencias en cuanto si la construcción con CLT es más barata que con otros materiales:

  • En términos generales, la construcción CLT es aproximadamente un 15 por ciento más barata que el acero y el hormigón convencionales, según la investigación del arquitecto Waugh Thistleton.
  • Sin embargo, otros estudios sobre la base de un análisis económico, el CLT sigue siendo un 5% más caro que una solución similar en concreto. Este hecho se relaciona esencialmente con la gran cantidad de madera utilizada y con el uso de tableros de yeso para cumplir con la seguridad contra incendios.
  • Niall Hewson: “He estado involucrado en una serie de propuestas para edificios CLT y en un gran número de casos el costo es a menudo el lugar donde se puede tropezar. Si cualquiera de estos edificios fuese calculado a un coste de sólo intercambiar de un material conl otro, entonces el CLT siempre se verá la opción más cara. Si se tienen en cuenta las ventajas constructivas más amplias de la construcción de madera prefabricada, a menudo se recupera toda esa diferencia en los costes de material. Los aparejadores y constructores son a menudo reacios a cuantificar estos ahorros, lo que es comprensible teniendo en cuenta que se trata de una nueva forma de construcción, pero estos tres proyectos demuestran que es posible hacerlo con un poco de investigación. Mi propia experiencia trabajando en edificios de madera me demuestra que el ahorro de costes y tiempo en estos proyectos se está subestimando ya que los siguientes oficios trabajan mucho más rápidos que en la construcción convencional.”
  • Se ha demostrado que la construcción de madera masiva es más barata que la construcción con estructura de hormigón, particularmente en proyectos más grandes. Esto se debe principalmente a que la construcción con madera masiva ha logrado una reducción del 25% en el programa de construcción y el consiguiente ahorro en los costes de financiación, costes preliminares y costes de contingencia. Sin embargo, un especialista en madera masiva debe formar parte del equipo de diseño si se quiere lograr un ahorro de costes. Esto se debe a que el 70-80% del coste de un edificio se determina durante la fase de diseño de un proyecto y durante el periodo in situ de la estructura de madera masiva por su diseño para su fabricación y montaje.

 

Según Niall Hewson, “aunque todo esto suena genial, si bien un poco intangible, hay ciertas situaciones en las que las otras ventajas de la madera harán que los edificios de madera sean aún más baratos en comparación con la construcción convencional o desbloquear proyectos que antes se consideraban poco rentables de desarrollar:”

 

  • Sitios con malas condiciones del terreno: los edificios de madera podrían llegar a pesar hasta la mitad del peso del equivalente en hormigón. Esto podría generar grandes ahorros en los costos de cimentación.
  • Construcción sobre corredores ferroviarios o ampliación de edificios existentes: mayor rendimiento o reducción de los costes de la estructura portante.
  • Edificios multiresidenciales entre 5-15 pisos: ahorro de velocidad y eficiencia en obra, lo que significa entregas más tempranas y reducción de los costes financieros.
  • Escuelas: la velocidad significa que la construcción podría condensarse en vacaciones, y menos ruido y la seguridad de la obra son también enormes ventajas.
  • Más ahorros se pueden encontrar en el reducido costo de instalación, generalmente un 50% más barato que instalar otros materiales con formatos de paneles/placas.
  • La seguridad en el lugar de trabajo se incrementa drásticamente debido a los paneles CLT prefabricados en fábricas y, por lo general, las únicas herramientas son los taladros eléctricos o neumáticos.
  • Con una fecha de finalización del proyecto más temprana, se acometen otras obras, a veces meses, mínimo 6-8, antes de lo previsto.
  • Durante la instalación, las interrupciones a los residentes y negocios de los alrededores se reducen al mínimo con una reducción del tiempo en el sitio de trabajo de más del 70%. Menos tiempo in situ también reduce el riesgo de accidentes para los instaladores. Los edificios construidos fuera de las instalaciones también son ligeros, por lo que la cantidad de tonelaje transportado en la carretera también se reduce.

 

La construcción con CLT puede ser competitivo en mercados inmobiliarios deprimidos como en Montreal, Canadá. Un proyecto como el edificio Arbora, construido por Nordic Structures, demuestra que hay un lugar para la construcción viable y asequible de media altura.

Complejo Arbora

 

Con las estructuras de madera en masa, se puede tener menos empleados y hacer más trabajo. Hay una escasez de mano de obra calificada en América del Norte, por lo que el hecho de que se puedan levantar estructuras con empleados considerablemente menos calificados es muy crítico. Típicamente se opera con sólo cuatro a seis trabajadores en una obra. El rendimiento por persona es mucho mayor.

Sin embargo, estos beneficios tienen un costo: mayor coordinación inicial y tiempo de diseño. Los componentes de madera de ingeniería se diseñan, optimizan, cortan con precisión milimétrica y luego se envían al sitio para su ensamblaje.

La clave del éxito comercial de Arbora en un mercado inmobiliario competitivo es la eficiencia del diseño y el reconocimiento de las propiedades estructurales inherentes al CLT desde el inicio de un proyecto. Hay aumentos de eficiencia en la replicación. El proyecto se organizó en torno a una retícula de 6,096 metros (20 pies), un vano estructural y una dimensión ideal para el transporte de vigas y paneles. La consistencia de la rejilla permitió un proceso de fabricación eficiente y un tiempo de montaje in situ reducido.

 

El reducido tiempo de construcción CLT, 6-8 meses menos de lo habitual que con otros materiales, da lugar a un ajuste en el calendario de entrada de ingresos. La disminución de 6-8 meses en el tiempo de entrada de ingresos tiene un efecto dramático en la TIR (Tasa Interna de Rendimiento) de Renta Variable. Los accionistas de capital ven reembolsados su patrimonio neto más el margen substancialmente más rápido, resultando en una TIR de capital mejorada. Debido a esta reducción del tiempo de construcción que resulta en una fecha de liquidación más temprana, se reducen los intereses y costos de tenencia de la tierra.

 

  • Bienestar:

Las paredes en blanco no provocan mucho en forma de una respuesta psicológica o emocional, pero el patronaje y la textura de los materiales naturales sí pueden. Las mentes humanas entienden la textura de la madera como no viviente, pero todavía la asocian con representaciones de los seres vivos. Los interiores de las escuelas que presentan madera y traen la naturaleza al interior provocan respuestas psicológicas positivas similares a cómo los árboles provocan respuestas biofílicas.

Esto apunta a mayores beneficios y posibles impactos en la salud humana. En un estudio de la Planet Ark Environmental Foundation, de Australia, publicado en 2015, señaló que la madera ha demostrado tener beneficios fisiológicos y psicológicos positivos. Los sentimientos de calor y comodidad que la madera provoca en las personas reducen la presión arterial y las frecuencias cardiacas, reduciendo el estrés y la ansiedad y aumentando las interacciones sociales positivas. También se ha demostrado que los productos de madera dentro de una habitación mejoran la calidad del aire interior al moderar la humedad.

 

Imagen de Best Timber Polska

 

Está la cuestión de su baja reflectividad lumínica, muy por debajo de la pintura blanca. Mientras que para muchos es un ‘anatema’ pintar o cubrir los paneles CLT, vale la pena tener en cuenta el impacto que tendrá el CLT desnudo sobre los niveles de luz.

 

Los arquitectos creen, cada vez más, que los rascacielos de madera son especialmente adecuados para las ciudades porque no son una molestia durante la construcción. Debido a que la madera está pre-fabricada, hay muy poco polvo, y se eliminan, prácticamente, las hormigoneras ruidosas. La retroalimentación que se reciben de los vecinos de una construcción CLT fue extremadamente positiva. La gente decía que era un placer pasar por la obra y que olía bien.

 

 

En la siguiente parte se tratarán las siguientes perspectivas: la construcción, la física de la construcción y la construcción modular.

El pasado día, 24 de abril, se vio en las noticias de televisión el suceso de un incendio en los áticos del hotel Gran Vía Capital, dedicado al alquiler de apartamentos turísticos de lujo, en la Gran Vía, número 48, de Madrid.

Imagen de El Confidencial – Twitter @Brucemeld

 

El fuego ha afectado a las instalaciones eléctricas y de refrigeración de la azotea del edificio, pero en el video de Bomberos de Madrid se ha visto que se han quemado tarimas y revestimientos de paredes de “madera plástica” (como dijeron los bomberos). Lo cual ha generado un humo denso, negro y tóxico.

Unas imágenes de las terrazas de los apartamentos:

Fotos del El Idealista

Imágenes de El Idealista

 

Cuando se trata de tarimas de madera al exterior, ¿qué nos dice la normativa?, ¿qué nos ofrecen las distintas maderas que hay en el mercado por su comportamiento frente al fuego?

Clases de reacción al fuego.

En Europa:

La norma UNE EN 13501-1:2002 especifica criterios de clasificación a partir de ensayos de reacción al fuego.

La reacción al fuego evalúa la capacidad de un material para favorecer el desarrollo de un incendio e indica si es combustible o incombustible. El material se clasifica mediante la asignación de una de las siguientes Euroclases: A1, A2, B, C, D y F, según la combustibilidad y contribución al fuego. En el caso de los suelos hay que añadir el subíndice FL. Así:

  • A1/A1fl: no combustible, sin contribución al fuego.
  • A2/A2fl: no combustible, sin contribución al fuego.
  • B/Bfl: combustible, baja contribución al fuego.
  • C/Cfl: combustible, contribución limitada al fuego.
  • D/Dfl: combustible, contribución media al fuego.
  • E/Efl: combustible, contribución alta al fuego.
  • F/Ffl: sin clasificar.

Además, de las clases anteriores, la designación debe contener las clasificaciones adicionales relativas a la producción de humo y de caída o desprendimiento de gotas inflamadas:

  • s1 (velocidad y emisión bajas), s2 (velocidad y emisión medias) y s3 (velocidad y emisión altas) indican la producción de humo.
  • d0 (sin caída de gotas y partículas inflamadas en 600s de ensayo SBI), d1 (sin caída de gotas y partículas inflamadas durante más de 10s en 600s de ensayo SBI) y d2 (ni d0 ni d1) indican si produce desprendimiento de gotas inflamadas.

Con el subíndice FL para suelos sólo hay s1 y s2.

Los materiales o productos deben clasificarse según sus condiciones de uso final, es decir, que un mismo material puede tener varias clasificaciones, dependiendo de si está montado sobre distintos soportes, con diferentes sistemas de anclajes, etc.

En Estados Unidos:

Como las tarimas tecnológicas más conocidas son de origen estadounidense, se califican con el estándar ASTM E 84. La norma estadounidense ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials mide el crecimiento de la llama en la parte inferior de una muestra de ensayo horizontal. El resultado es un índice de propagación de la llama (FSI, Flame Spread Index), que es un número no dimensional que se coloca en una escala relativa en la que el tablero de amianto-cemento tiene un valor de 0 y el roble rojo tiene 100. El índice de humo desarrollado abreviado SDI, Smoke Developed Index) es una medida de la concentración de humo que un material emite al quemarse. Al igual que el índice de propagación de la llama, se basa en una escala arbitraria en la que el tablero de amianto-cemento tiene un valor de 0 y el roble rojo tiene 100.

Class A = 0-25

Class B = 26-75

Class C = 76-200

Siendo A la propagación de llama más baja y C la más alta. Con el fin de cumplir con la clasificación en cualquiera de las tres categorías, el índice de humo desarrollado no puede superar los 450.

La evaluación de un FSI por este método de prueba no proporciona una buena comprensión de cómo el fuego se propagaría a toda escala, como en una habitación, para algunos materiales. En particular, los resultados de los materiales que gotean, como los termoplásticos, no son indicativos del peligro de incendio que se instala en las paredes y techos porque tienden a derretirse y escurrirse desde la parte inferior del techo horizontal en la cámara de ensayo. Debido a que el método de prueba mide cuánto de lejos progresó el fuego en la cámara de prueba, este tipo de “falta de progresión de fuego” proporciona un FSI engañoso. Con el fin de abordar estas restricciones, se derivó un nuevo método de prueba, NFPA 286 Métodos estándar de pruebas de fuego para evaluar la contribución del acabado interior de la pared y el techo al crecimiento del fuego en la habitación. Las tarimas tecnológicas estadounidenses todavía no se han calificado con este estándar.

Hay una norma europea en ciernes, la EN16755, que prescribe los requisitos de clasificación para la durabilidad de la reacción al fuego de los productos de madera con tratamientos ignífugos (en profundidad o superficiales) que se utilizarán en las condiciones de uso final interiores y exteriores. Se basa en que la reacción al fuego puede reducirse mediante la exposición a condiciones con contacto con el agua y/o húmedas y debe demostrarse la capacidad de los productos tratados para continuar funcionando cuando se exponen a estas condiciones.

El Código Técnico de la Edificación.

A los suelos se les exige, en función de su situación en el edificio (por ejemplo, en las vías de evacuación), la reacción al fuego definida en el Código Técnico de la Edificación (CTE).

En las viviendas, para tarimas de madera al exterior no se exige una clase de reacción al fuego, ya que revisando la Sección SI 2 Propagación exterior del Documento Básico SI Seguridad en caso de incendio del CTE, no se especifica una exigencia de reacción al fuego para elementos exteriores horizontales como pudiera ser la tarima de madera.

La reacción al fuego se puede mejorar con tratamientos de impregnación en profundidad con retardantes del fuego.

 

Producto Tipo de producto Madera Composición Tratamiento ignífugo Clasificación europea (según EN13501-1) Clasificación EE.UU (según ASTM E84) Fabricante Fabricante del retardante
Accoya Madera modificada (acetilada) Pino radiata D-s2,d2 Class B – FSI = 95 / SDI =  155 Accoya
Accoya Madera modificada (acetilada) Pino radiata Impregnación a presión con Burnblock B-s1,d0 Accoya Burnblock
Bamboo X-treme Madera de ingeniería, termotratada y prensada Bambú > 90 % de fibra natural prensada de bambú Bfl-s1-d0 Mosso
Castaño Madera maciza aserrada Castaño Cfl-s1 Sierolam
Fiberon Paramount Madera tecnológica PVC Class B – FSI = 30 / SDI = 850 Fiberon
Ipe Madera maciza aserrada Ipe D-s2,d0 Class B
Kebony SYP Madera modificada (furfurilada) Pino amarillo del Sur D Kebony
OrganoWood Madera modificada (fosilizada) Pino silvestre Bfl-s1 Organowood
Cualquier madera, tratada con NexGen Madera aserrada maciza Douglas Fir Impregnación a presión (sólo en maderas impregnables), inmersión, máquina de barnizado o manualmente con NexGen (sales de boro + aditivos) Class A – FSI <25 / SDI = 15-50 NexGen
Platowood Madera modificada – hidro-termotratada Abeto / Fraké D-s2,d0 (12 mm mínimo) Plarowood
Platowood Madera modificada – hidro-termotratada Abeto / Fraké Impregnación a presión con retardantes del fuego B-s2,d0 Plarowood
Resysta Madera tecnológica 60 % cáscara de arroz + 22 % sal + 18 % aceite mineral + PVC B2 (B1 con tratamiento adicional) Class A – FSI = 25 / SDI = 450 Resysta
Thermowood Madera modificada – termotratada Varias D Thermowood
Thermowood pine Madera modificada – termotratada Pino Impregnación a presión con Dricon NON-COM Exterior de Lonza B-s1,d0 Thermowood Lonza
Timbertech TwinFinish Madera tecnológica Polietileno de alta densidad (HDPE) y virutas de madera Class B – FSI = 75 / SDI = 200 Timbertech
Trex Trascend Madera tecnológica Núcleo de Polietileno de alta densidad (HDPE) y virutas de madera, recubierto de polímeros Class B – FSI = 60 Trex
UPM Profi Deck Madera tecnológica Celulosa y polímeros de plásticos E UPM Biocomposites
Visendum Madera tecnológica 70 % de madera reciclada de pino y roble y 30 % de resinas poliméricas D-s1 Visendum

 

En cuanto a la reacción al fuego, son interesantes: el bambú X-treme, como madera de ingeniería (EWP, Engineered Wood Product), Organowood, como madera modificada, Resysta, como madera tecnológica, y NexGen, no es una madera sino un producto ecológico fungicida, insecticida, antitermitas y retardante del fuego para el tratamiento de la madera.