Archivos para las entradas con etiqueta: coeficiente de conductividad térmica

Con este post sigue una serie en los que se actualizarán o modificarán los anteriores sándwich de cubierta ideal con el propósito de cumplir con los valores orientativos de los parámetros característicos de la envolvente térmica (en este caso, una cubierta) para el predimensionado de soluciones constructivas en uso residencial. Dichos valores están en la tabla E.1 del apéndice E del Documento Básico HE Ahorro de energía del Código Técnico de la Edificación, publicado en el BOE el 12 de septiembre de 2013.

En el Sándwich XPS + aislamiento acústico tenemos el XPS y un aislamiento acústico como la lana mineral con una densidad de unos 15 kg/m³.

Las propiedades físicas del XPS son:

 

Densidad (kg/m³) 34
Calor específico c (J/kg.K) 1450
Conductividad térmica λ (W/m°K) 0.034
Resistencia a la difusión del vapor de agua μ 120
Comportamiento al fuego según Euroclase E
Desfase en horas, con un espesor de 8 cm 2,182

 

Las propiedades físicas de la lana mineral son:

 

Densidad (kg/m³) 15
Calor específico c (J/kg.K a 20°C) 800
Conductividad térmica λ (W/m°K) 0.036
Permeabilidad al paso del vapor de agua μ <1
Comportamiento al fuego según Euroclase A1
Desfase en horas, con un espesor de 20 cm 6

 

La lana mineral se presenta en forma de panel semirrígido.

 

El esquema de este sándwich es el siguiente:

1º.- Pares (o cabrios) como estructura portante.

2º.- Entarimado de pino Norte de 22 mm de espesor.

3º.- Una membrana de freno de vapor con sd = 2,3, en aquellos casos en que sea necesario.

4º.- Aislamiento de XPS con un espesor de 80 mm.

5º.- Rastreles horizontales de 50 x 80 mm, paralelos al alero.

6º.- Aislamiento de lana mineral de 80 mm de espesor, cuyos paneles se colocan paralelos al alero.

7º.- Rastreles verticales de 30 x 40 mm.

8º.-  Membrana impermeable y transpirable tipo Tyvek, con un sd=0,02.

 

El freno de vapor tiene la función de que el vapor de agua que provenga del interior de la edificación no haga disminuir las propiedades aislantes de la lana mineral.

 

El aislamiento de lana mineral se coloca entre rastreles de 50 x 80 mm. Y éstos se atornillan hasta los pares o correas de la estructura.

El aislamiento XPS se coloca como una piel continua, sin puentes térmicos. Para ello es conveniente que se coloquen dos capas que sumen el espesor requerido y, además, deben disponerse contrapeadas, para no hacer coincidir las juntas de una capa con las de la otra. Se mejora todavía más la continuidad del aislamiento si los cantos de los paneles tienen un perfilado en L o un machihembrado.

 

Sobre el aislamiento de lana mineral, se atornillan los rastreles de 30 x 40 mm a los rastreles de 50 x 80 mm[1].

 

Estos rastreles crean la cámara de ventilación. No obstante, el rastrel puede tener más altura si se desea una cámara más grande.

 

Luego se coloca la membrana sobre el aislamiento, disponiéndola encima de los rastreles verticales y dejándola holgada como formando valles entre aquéllos.

 

La transmitancia térmica U total de este sándwich es de 0,209 W/m²k, próximo al límite de la zona E (0,19). No obstante, debe hacerse un estudio global del edificio para comprobar si cumple con las nuevas exigencias del CTE.

Haciendo la comprobación de condensaciones intersticiales con el programa WUFI (Wärme und Feuchte Instationär), no las hay. Se ha considerado una temperatura interior de 20° C, con una humedad relativa del 50 % del aire, y una exterior de -10° C, con una humedad relativa del 80 % del aire.

Con este sándwich se consigue un desfase térmico de 5,5 horas en cuanto a la protección contra el calor estival.

 

Desde el punto de vista de estos dos aislamientos, se muestran los pros y contras:

Pros:

  • La lana mineral es un muy buen aislamiento térmico y de medio a buen aislamiento acústico, no es hidrófilo y es imputrescible, inerte e incombustible.
  • La lana mineral es muy permeable al vapor de agua.
  • La lana mineral procede de recursos no renovables pero abundantes.
  • El XPS tiene una alta resistencia mecánica.
  • El XPS tiene una muy buena durabilidad y estabilidad dimensional.
  • La lana mineral es uno de los materiales más baratos del mercado.

Contras:

  • El XPS no es ecológico.
  • El XPS es tóxico en caso de incendio.
  • El XPS y la lana de roca no tienen ninguna capacidad higroscópica.
  • EL XPS electroestático.
  • El XPS no es transpirable y no capilar.
  • EL XPS tiene una muy débil capacidad de protección contra el calor.
  • El XPS es atacable por los roedores.
  • La lana mineral de débil densidad es fácilmente degradable por los roedores.
  • La lana mineral tiene una mala estabilidad en el tiempo.
  • La lana mineral tiene una contribución mediocre.
  • La eficiencia de la lana mineral se degrada en presencia de la humedad a causa de una puesta en obra negligente.
  • La lana mineral tiene un mal balance del carbono y energía gris elevada.
  • La lana mineral contiene fibras respirables irritantes a la hora de manipular los paneles.

 

Finalmente, se exponen las ventajas e inconvenientes de este sándwich:

Ventajas:

  • La baja absorción de agua y la resistencia al hielo-deshielo (para evitar pérdidas de resistencia mecánica) del XPS lo hacen ideal ya que el aislante se encuentra debajo de la teja. Entonces, es un punto a favor para hacer una cubierta invertida, ya que hay versiones especiales de paneles para recibir directamente, con adhesivos especiales, las tejas cerámicas.
  • Los tirafondos que atornillan los rastreles de 50 x 80 mm pueden ser más cortos y más baratos, de 6/8 x 260 mm (22 + 80 + 80 mm), al contrario que sucede con un aislante como piel continua de espesor elevado.
  • Se respeta la regla 5/1 del orden de los aislamientos según la permeabilidad al vapor de agua: cada vez más abiertos según se va hacia el exterior de la envolvente.
  • Muy buena relación entre aislamiento térmico-acústico y precio.

Inconvenientes:

  • Los dos aislamientos no son eficaces en la protección contra el calor.
  • Cuando se trabaja en la cubierta hay que tener cuidado de pisar sobre los rastreles.
  • Hay un puente acústico.

 

El principal inconveniente es la protección contra el calor de ambos aislantes debido a una característica poco conocida: la capacidad de acumulación, que mide la aptitud del material en atenuar las diferencias extremas en función del ritmo día/noche. Es decir, estos aislantes presentan un mal desfase térmico, lo cual restituyen el calor más pronto hacia el interior de la vivienda favoreciendo los picos de calor en verano (interior más caluroso).

 

El otro inconveniente es el puente acústico que crea el rastrel de 50 x 80 mm porque pone en contacto el XPS con el entarimado. La solución es colocar otro aislante como la lana de roca como una piel continua de menos espesor, pero con el espesor suficiente para el aislamiento acústico de la cubierta. Entonces, el espesor del aislante XPS será mayor. No obstante, hay que hacer un cuidadoso estudio de la eficiencia térmica y acústica de este sándwich. Otra solución, es adherir a la cara inferior de los rastreles bandas de un aislante como el corcho, fieltro de cáñamo, etc.

 

Puede ver la simulación 3d clicando en este enlace:

https://skfb.ly/AYDA

Para manejar el dibujo 3D, he aquí unas sencillas instrucciones para manejarlo con el ratón:

  1. Pulsando continuamente el botón izquierdo y arrastrando, gira el dibujo en todas las direcciones,
  2. Pulsando continuamente el botón derecho y arrastrando, desplaza el dibujo en todas las direcciones,
  3. Moviendo la rueda del ratón hacia arriba o abajo, se hace zoom más o menosSe visualiza en navegadores que soporten WebGL, conmo Firefox y Chrome.

 

Se visualiza en navegadores que soporten WebGL, conmo Firefox y Chrome.

 

[1] El hecho de colocar horizontalmente los rastreles de 50 x 80 del aislante permite dos cosas: primero, no influye la distancia entre ejes de pares y, segundo, colocar los rastreles verticales de 30 x 40 con la distancia entre ejes que deseemos.

Si la estructura portante fueran correas, los rastreles del aislamiento se colocarían verticalmente, pero con más sección, es decir, hay que sumar al espesor del aislante de lana mineral la altura de la cámara de ventilación. Entonces, estos rastreles serían de 50 x 110/120 mm. Así, se ahorra la colocación de los rastreles de 30 x 40 mm.

Por lo tanto, estos rastreles verticales cumplen dos funciones: colocar la lana mineral y crear la cámara de ventilación, y como soporte de los rastreles horizontales de la cobertura de teja o pizarra.

 

Con este post se inicia una serie en los que se actualizarán los anteriores sándwich de cubierta ideal con el propósito de cumplir con los valores orientativos de los parámetros característicos de la envolvente térmica (en este caso, una cubierta) para el predimensionado de soluciones constructivas en uso residencial. Dichos valores están en la tabla E.1 del apéndice E del Documento Básico HE Ahorro de energía del Código Técnico de la Edificación, publicado en el BOE el 12 de septiembre de 2013.

 

En el Sándwich de PIR + fibras de madera, tenemos un doble aislamiento térmico y acústico: uno rígido de poliisocianurato (PIR) de unos 32 kg/m³ como capa de aislamiento térmico, y otro de más densidad todavía, de 270 kg/m³, como aislamiento térmicoacústico e impermeabilización. Dicho aislamiento se colocará por el exterior (método Sarking).

 

El coeficiente de conductividad térmica de la capa de aislamiento de poliisocianurato es de 0,022 W/m°K. Entonces la resistencia térmica K es de 6,64 W/m²k para un espesor de 80 mm. Se presenta en forma de panel rígido con una lámina adherida de aluminio en ambas caras.

 

Las propiedades físicas del poliisocianurato son:

 

Densidad (kg/m³) 32-35
Calor específico c (J/kg.K a 20°C) 1400
Conductividad térmica λ (W/m°K) 0.022
Absorción de agua < 2%
Comportamiento al fuego según Euroclase B-s2-d0

 

El coeficiente de conductividad térmica de la capa de impermeabilización de fibras de madera es de 0,050 W/m°K. Entonces la resistencia térmica K es de 1,00 W/m²k para un espesor de 52 mm. Se presenta en forma de panel rígido y está machihembrado.

 

Las propiedades físicas de las fibras de madera son:

 

Densidad (kg/m³) 270
Calor específico c (J/kg.K a 20°C) 2000
Conductividad térmica λ (W/m°K) 0.050
Resistencia al   paso del vapor de agua μ ≤3
Comportamiento al fuego según Euroclase E

 

 

El esquema de este sándwich es el siguiente:

1º.- Pares o cabios como estructura portante.

2º.- Entarimado de pino Norte de 22 mm de espesor.

3º.- Una capa de aislamiento de poliisocinurato de 80 mm de espesor.

4º.- Panel bajo teja, impermeable, transpirable y cortavientos, de fibras de madera de alta densidad de 52 mm.

5º.- Rastreles verticales de 30 x 40 mm o más de pino tratado en profundidad en autoclave.

6ª.- Cobertura de teja o pizarra.

 

Ambas capas de aislamiento se colocan como una piel continua, sin puentes térmicos.

Sobre el aislamiento, se atornillan los rastreles de 30 x 40 mm llegando hasta la estructura portante. Estos rastreles crean la cámara de ventilación. No obstante, el rastrel puede tener más altura si se desea una cámara más grande según los requisitos.

 

La transmitancia térmica U total de este sándwich es de 0,199 W/m²k, un valor muy próximo al límite de la zona E (0,19).

Haciendo la comprobación de condensaciones intersticiales con el programa WUFI (Wärme und Feuchte Instationär), no las hay. Se ha considerado una temperatura interior de 20° C, con una humedad relativa del 50 % del aire, y una exterior de -10° C, con una humedad relativa del 80 % del aire.

 

Con este sándwich se consigue un desfase térmico de 9,5 horas en cuanto a la protección contra el calor estival.

 

Desde el punto de vista del aislamiento, se muestran los pros y contras de cada uno de los aislamientos:

Del poliisocianurato:

Pros:

  • Este material tiene una buena resistencia mecánica.
  • Como es de células cerradas, la absorción de agua es despreciable y tiene una buena resistencia a la difusión del vapor de agua.
  • Muy buena estabilidad dimensional.
  • No contienen CFC’s ni HCFC’s.
  • Resistente al envejecimiento.
  • Excelente comportamiento ante el fuego: no funde ni gotea ante la llama directa. Es una de las principales ventajas frente a la espuma rígida de poliuretano (PU).

Contras:

  • No es ecológico, ya que demanda mucha energía en su fabricación.
  • Mal aislamiento acústico.
  • Es caro.

 

 

De las fibras de madera.

Pros:

  • Las fibras de madera es un material ecológico y, por tanto, contribuyen a construcción sostenible.
  • Es reciclable.
  • Este material tiene una buena resistencia mecánica.
  • En los paneles bajo teja se impregnan de bitumen, parafina o látex.
  • No produce irritaciones cutáneas.
  • Compatibilidad biológica certificada en Alemania.
  • Apertura a la difusión del vapor de agua (μ): de 2 a 10 en función del tipo de panel. Alta capacidad de regulación de la humedad.
  • Muy buen compromiso entre aislamiento térmico (caliente/frío) y acústico (tanto a los ruidos aéreos como de impacto).
  • Las fibras de madera tienen una contribución excelente para el confort en verano, ya que el desfase térmico alcanzado con las fibras de madera es de unas 5 veces mayor frente a los aislantes usuales como el poliuretano y el poliestireno extruido, comparando un mismo grosor de material.
  • Material no consumible por los roedores.

Contras:

  • Es combustible.
  • A veces contienen sustancias químicas para retrasar la combustión.
  • Contienen, con frecuencia, fibras de poliéster de estructura.
  • Es cara.
  • Puede pudrirse en caso de humedad persistente.

 

Finalmente, se exponen las ventajas e inconvenientes de este sándwich:

Ventajas:

  • Aislamiento térmico y acústico.
  • Buen confort estival, ya que nos acercamos al mínimo de 10 horas recomendado.
  • Instalación más sencilla al haber menos elementos en el sándwich. El aluminio actúa como barrera de vapor.
  • El PIR ofrece una rapidez en la colocación puesto que se suministran en paneles de 2.500 x 1.200 mm.
  • El grosor del sándwich es el más pequeño, ya es de 15,4 cm, sin contar con la cámara de aire ventilada y el material de cubrición.

Inconvenientes:

  • Instalación complicada por la fijación de los tirafondos de doble fileteado.
  • Como el PIR es de célula cerrada, es totalmente impermeable al vapor de agua.
  • Precio bastante caro.

 

Un inconveniente importante es la instalación, por los tornillos especiales. Estos necesitan introducirse en un ángulo de 30° con respecto al plano de la cubierta; se colocan cada x cm, según cálculos; y van alternándose el ángulo de inserción: +30°, -30°, +30°, etc. Todo esto significa que no todos los carpinteros están dispuestos a ello, lo ven complicado, etc. Pero, sobre todo, el tornillo no es barato, el de 22-24 cm vale más de 1,5 €, con descuento incluido.

 

Este sándwich hace que la cubierta no transpire, pero no sería problema si la edificación contase con un Sistema Mecánico de Ventilación que cumpliese con las nuevas exigencias del nuevo Código Técnico de la Edificación.

 

Puede ver la simulación 3d clicando en este enlace:

https://skfb.ly/ALVV

Para manejar el dibujo 3D, he aquí unas sencillas instrucciones para manejarlo con el ratón:

  1. Pulsando continuamente el botón izquierdo y arrastrando, gira el dibujo en todas las direcciones,
  2. Pulsando continuamente el botón derecho y arrastrando, desplaza el dibujo en todas las direcciones,
  3. Moviendo la rueda del ratón hacia arriba o abajo, se hace zoom más o menos.

 

En el Sándwich de fibras de clima de montaña – ecológico, para altitudes superiores a 900 metros, tenemos un doble aislamiento térmico y acústico: uno de fibras de madera con una densidad de 50 kg/m³ como capa de aislamiento principal, y otro de más densidad todavía, de 270 kg/m³, como aislamiento e impermeabilización. La capa de aislamiento principal se colocará entre los pares de la estructura de madera primaria.

El coeficiente de conductividad térmica de la capa de aislamiento principal de fibras de madera es de 0,036 W/m°K. Entonces la resistencia térmica K es de 5,55 W/m²k para un espesor de 200 mm. Se presenta en forma de panel flexible.

Las propiedades físicas de las fibras de madera son:

Densidad (kg/m³)

50

Calor específico c (J/kg.K a 20°C)

2000

Conductividad térmica λ (W/m°K)

0.036

Resistencia al  paso del  vapor  de agua μ

≤2

Comportamiento al fuego según Euroclase

E

Desfase térmico para una densidad de 50 a 60 kg/m³

>8 horas

Atenuación acústica Rw(C, Ctr)

49 (-3, -10) dB para un aislamiento entre pares con 180 mm de espesor

 

El coeficiente de conductividad térmica de la capa de impermeabilización de fibras de madera es de 0,050 W/m°K. Entonces la resistencia térmica K es de 0,70 W/m²k para un espesor de 35 mm. Se presenta en forma de panel rígido y es machihembrado.

Las propiedades físicas de las fibras de madera son:

Densidad (kg/m³)

270

Calor específico c (J/kg.K a 20°C)

2000

Conductividad térmica λ (W/m°K)

0.050

Resistencia al  paso del  vapor  de agua μ

≤3

Comportamiento al fuego según Euroclase

E

 

El esquema de este sándwich es el siguiente, desde el interior:

1º.- Estructura primaria de madera.

2º.- Entarimado de pino Norte de 22 mm de espesor.

3º.- Una membrana de freno de vapor con sd = 2,3, en aquellos casos en que sea necesario.

4º.- Una capa de aislamiento de fibras de madera de 200 mm de espesor con una densidad de 50 kg/m³. No se coloca en la zona de los aleros.

5º.- Tablero OSB 3 de 18 mm de espesor. En aleros, se coloca un entarimado.

6º.- Panel bajo teja, impermeable, transpirable y cortavientos, de fibras de madera de alta densidad de 35 mm.

7º.- Rastreles verticales de 30 x 40 mm.

El freno de vapor tiene la función de que el vapor de agua que provenga del interior de la edificación no haga disminuir las propiedades aislantes de las fibras de madera.

El aislamiento de fibras de madera se coloca entre los pares de la estructura de madera primaria.

Sobre la capa d panel hidrófugo, se atornillan los rastreles de 30 x 40 mm llegando hasta la estructura portante. Estos rastreles crean la cámara de ventilación. No obstante, el rastrel puede tener más altura si se desea una cámara más grande.

La transmitancia térmica U total de este sándwich es de 0,188 W/m²k, inferior al límite de la zona E.

Haciendo la comprobación de condensaciones intersticiales con el programa WUFI (Wärme und Feuchte instationär), no las hay. Se ha considerado una temperatura interior de 20° C, con una humedad relativa del 50 % del aire, y una exterior de -10° C, con una humedad relativa del 80 % del aire.

Con este sándwich se consigue un desfase térmico de 12,5 horas en cuanto a la protección contra el calor estival.

 

Desde el punto de vista del aislamiento principal, se muestran los pros y contras de las fibras de madera:

Pros:

  • Las fibras de madera es un material ecológico y, por tanto, contribuyen a construcción sostenible.
  • Es reciclable.
  • Este material tiene una buena resistencia mecánica.
  • En los paneles bajo teja se impregnan de bitumen, parafina o látex.
  • No produce irritaciones cutáneas.
  • Compatibilidad biológica certificada en Alemania.
  • Apertura a la difusión del vapor de agua (μ): de 2 a 10 en función del tipo de panel. Alta capacidad de regulación de la humedad.
  • Muy buen compromiso entre aislamiento térmico (caliente/frío) y acústico.
  • Las fibras de madera tienen una contribución excelente para el confort en verano, ya que el desfase térmico alcanzado con las fibras de madera es de unas 5 veces mayor frente a los aislantes usuales como el poliuretano y el poliestireno extruido, comparando un mismo grosor de material.
  • Más económico que los de más densidad.

Contras:

  • Es combustible.
  • A veces contienen sustancias químicas para retrasar la combustión.
  • Contienen, con frecuencia, fibras de poliéster de estructura.
  • Es más caro que los aislantes tradicionales.

 

Finalmente, se exponen las ventajas e inconvenientes de este sándwich:

Ventajas:

  • Aislamiento térmico y acústico.
  • Se ha mejorado más el aislamiento acústico.
  • Excelente confort estival.
  • Instalación más sencilla al haber menos elementos en el sándwich.
  • Ya no se necesitan tirafondos de doble fileteado.
  • Disminuye considerablemente el grosor del sándwich de la cubierta.

Inconvenientes:

  • Por las fibras de madera, se necesita la presencia de una barrera de vapor o freno de vapor, si es necesario.
  • La anchura de los paneles de aislamiento principal imponen una modulación determinada a los pares de la estructura.
  • Precio más caro.
  • Ya no se puede disfrutar de la estética de un entramado de madera visto.

 

Puede ver la simulación 3d clicando en este enlace:

https://skfb.ly/ywwS

 

Para manejar el dibujo 3D, he aquí unas sencillas instrucciones para manejarlo con el ratón:

  1. Pulsando continuamente el botón izquierdo y arrastrando, gira el dibujo en todas las direcciones,
  2. Pulsando continuamente el botón derecho y arrastrando, desplaza el dibujo en todas las direcciones,
  3. Moviendo la rueda del ratón hacia arriba o abajo, se hace zoom más o menos.