Archivos para las entradas con etiqueta: clima de montaña

En el Sándwich de fibras de clima de montaña – ecológico, para altitudes superiores a 900 metros, tenemos un doble aislamiento térmico y acústico: uno de fibras de madera con una densidad de 50 kg/m³ como capa de aislamiento principal, y otro de más densidad todavía, de 270 kg/m³, como aislamiento e impermeabilización. La capa de aislamiento principal se colocará entre los pares de la estructura de madera primaria.

El coeficiente de conductividad térmica de la capa de aislamiento principal de fibras de madera es de 0,036 W/m°K. Entonces la resistencia térmica K es de 5,55 W/m²k para un espesor de 200 mm. Se presenta en forma de panel flexible.

Las propiedades físicas de las fibras de madera son:

Densidad (kg/m³)

50

Calor específico c (J/kg.K a 20°C)

2000

Conductividad térmica λ (W/m°K)

0.036

Resistencia al  paso del  vapor  de agua μ

≤2

Comportamiento al fuego según Euroclase

E

Desfase térmico para una densidad de 50 a 60 kg/m³

>8 horas

Atenuación acústica Rw(C, Ctr)

49 (-3, -10) dB para un aislamiento entre pares con 180 mm de espesor

 

El coeficiente de conductividad térmica de la capa de impermeabilización de fibras de madera es de 0,050 W/m°K. Entonces la resistencia térmica K es de 0,70 W/m²k para un espesor de 35 mm. Se presenta en forma de panel rígido y es machihembrado.

Las propiedades físicas de las fibras de madera son:

Densidad (kg/m³)

270

Calor específico c (J/kg.K a 20°C)

2000

Conductividad térmica λ (W/m°K)

0.050

Resistencia al  paso del  vapor  de agua μ

≤3

Comportamiento al fuego según Euroclase

E

 

El esquema de este sándwich es el siguiente, desde el interior:

1º.- Estructura primaria de madera.

2º.- Entarimado de pino Norte de 22 mm de espesor.

3º.- Una membrana de freno de vapor con sd = 2,3, en aquellos casos en que sea necesario.

4º.- Una capa de aislamiento de fibras de madera de 200 mm de espesor con una densidad de 50 kg/m³. No se coloca en la zona de los aleros.

5º.- Tablero OSB 3 de 18 mm de espesor. En aleros, se coloca un entarimado.

6º.- Panel bajo teja, impermeable, transpirable y cortavientos, de fibras de madera de alta densidad de 35 mm.

7º.- Rastreles verticales de 30 x 40 mm.

El freno de vapor tiene la función de que el vapor de agua que provenga del interior de la edificación no haga disminuir las propiedades aislantes de las fibras de madera.

El aislamiento de fibras de madera se coloca entre los pares de la estructura de madera primaria.

Sobre la capa d panel hidrófugo, se atornillan los rastreles de 30 x 40 mm llegando hasta la estructura portante. Estos rastreles crean la cámara de ventilación. No obstante, el rastrel puede tener más altura si se desea una cámara más grande.

La transmitancia térmica U total de este sándwich es de 0,188 W/m²k, inferior al límite de la zona E.

Haciendo la comprobación de condensaciones intersticiales con el programa WUFI (Wärme und Feuchte instationär), no las hay. Se ha considerado una temperatura interior de 20° C, con una humedad relativa del 50 % del aire, y una exterior de -10° C, con una humedad relativa del 80 % del aire.

Con este sándwich se consigue un desfase térmico de 12,5 horas en cuanto a la protección contra el calor estival.

 

Desde el punto de vista del aislamiento principal, se muestran los pros y contras de las fibras de madera:

Pros:

  • Las fibras de madera es un material ecológico y, por tanto, contribuyen a construcción sostenible.
  • Es reciclable.
  • Este material tiene una buena resistencia mecánica.
  • En los paneles bajo teja se impregnan de bitumen, parafina o látex.
  • No produce irritaciones cutáneas.
  • Compatibilidad biológica certificada en Alemania.
  • Apertura a la difusión del vapor de agua (μ): de 2 a 10 en función del tipo de panel. Alta capacidad de regulación de la humedad.
  • Muy buen compromiso entre aislamiento térmico (caliente/frío) y acústico.
  • Las fibras de madera tienen una contribución excelente para el confort en verano, ya que el desfase térmico alcanzado con las fibras de madera es de unas 5 veces mayor frente a los aislantes usuales como el poliuretano y el poliestireno extruido, comparando un mismo grosor de material.
  • Más económico que los de más densidad.

Contras:

  • Es combustible.
  • A veces contienen sustancias químicas para retrasar la combustión.
  • Contienen, con frecuencia, fibras de poliéster de estructura.
  • Es más caro que los aislantes tradicionales.

 

Finalmente, se exponen las ventajas e inconvenientes de este sándwich:

Ventajas:

  • Aislamiento térmico y acústico.
  • Se ha mejorado más el aislamiento acústico.
  • Excelente confort estival.
  • Instalación más sencilla al haber menos elementos en el sándwich.
  • Ya no se necesitan tirafondos de doble fileteado.
  • Disminuye considerablemente el grosor del sándwich de la cubierta.

Inconvenientes:

  • Por las fibras de madera, se necesita la presencia de una barrera de vapor o freno de vapor, si es necesario.
  • La anchura de los paneles de aislamiento principal imponen una modulación determinada a los pares de la estructura.
  • Precio más caro.
  • Ya no se puede disfrutar de la estética de un entramado de madera visto.

 

Puede ver la simulación 3d clicando en este enlace:

https://skfb.ly/ywwS

 

Para manejar el dibujo 3D, he aquí unas sencillas instrucciones para manejarlo con el ratón:

  1. Pulsando continuamente el botón izquierdo y arrastrando, gira el dibujo en todas las direcciones,
  2. Pulsando continuamente el botón derecho y arrastrando, desplaza el dibujo en todas las direcciones,
  3. Moviendo la rueda del ratón hacia arriba o abajo, se hace zoom más o menos.

 

En el Sándwich de fibras de clima de montaña – ecológico, para altitudes superiores a 900 metros, tenemos un doble aislamiento térmico y acústico: uno de fibras de madera de alta densidad de 110 kg/m³ como capa de aislamiento, y otro de más densidad todavía, de 270 kg/m³, como aislamiento e impermeabilización. Dicho aislamiento se colocará por el exterior (método Sarking).

El coeficiente de conductividad térmica de la capa de aislamiento de fibras de madera es de 0,039 W/m°K. Entonces la resistencia térmica K es de 2,55 W/m²k para un espesor de 100 mm. Se presenta en forma de panel rígido.

Las propiedades físicas de las fibras de madera son:

Densidad (kg/m³)

110

Calor específico c (J/kg.K a 20°C)

2000

Conductividad térmica λ (W/m°K)

0.039

Resistencia al  paso del  vapor  de agua μ

≤3

Comportamiento al fuego según Euroclase

E

Desfase térmico para una densidad de 50 a 60 kg/m³

>8 horas

El coeficiente de conductividad térmica de la capa de impermeabilización de fibras de madera es de 0,050 W/m°K. Entonces la resistencia térmica K es de 0,70 W/m²k para un espesor de 35 mm. Se presenta en forma de panel rígido y es machihembrado.

Las propiedades físicas de las fibras de madera son:

Densidad (kg/m³)

270

Calor específico c (J/kg.K a 20°C)

2000

Conductividad térmica λ (W/m°K)

0.050

Resistencia al  paso del  vapor  de agua μ

≤3

Comportamiento al fuego según Euroclase

E

El esquema de este sándwich es el siguiente:

1º.- Entarimado de pino Norte de 22 mm de espesor.

2º.- Una membrana de freno de vapor con sd = 2,3, en aquellos casos en que sea necesario.

3º.- Una capa de aislamiento de fibras de madera de alta densidad de 80 mm de espesor.

4º.- Rastreles verticales de 50 x 80 mm.

5º.- Una capa de aislamiento de fibras de madera de alta densidad de 80 mm de espesor.

6º.- Panel bajo teja, impermeable, transpirable y cortavientos, de fibras de madera de alta densidad de 35 mm.

5º.- Rastreles verticales de 30 x 40 mm.

El freno de vapor tiene la función de que el vapor de agua que provenga del interior de la edificación no haga disminuir las propiedades aislantes de las fibras de madera.

El aislamiento de fibras de madera se coloca como una piel continua, sin puentes térmicos.

Sobre el aislamiento, se atornillan los rastreles de 30 x 40 mm llegando hasta la estructura portante. Estos rastreles crean la cámara de ventilación. No obstante, el rastrel puede tener más altura si se desea una cámara más grande.

La transmitancia térmica U total de este sándwich es de 0,2002 W/m²k, inferior al límite de la zona E.

Haciendo la comprobación de condensaciones intersticiales con el programa WUFI (Wärme und Feuchte instationär), no las hay. Se ha considerado una temperatura interior de 20° C, con una humedad relativa del 50 % del aire, y una exterior de -10° C, con una humedad relativa del 80 % del aire.

Con este sándwich se consigue un desfase térmico de 13,5 horas en cuanto a la protección contra el calor estival.

Desde el punto de vista del aislamiento, se muestran los pros y contras:

Pros:

  • Las fibras de madera es un material ecológico y, por tanto, contribuyen a construcción sostenible.
  • Es reciclable.
  • Este material tiene una buena resistencia mecánica.
  • En los paneles bajo teja se impregnan de bitumen, parafina o látex.
  • No produce irritaciones cutáneas.
  • Compatibilidad biológica certificada en Alemania.
  • Apertura a la difusión del vapor de agua (μ): de 2 a 10 en función del tipo de panel. Alta capacidad de regulación de la humedad.
  • Muy buen compromiso entre aislamiento térmico (caliente/frío) y acústico.
  • Las fibras de madera tienen una contribución excelente para el confort en verano, ya que el desfase térmico alcanzado con las fibras de madera es de unas 5 veces mayor frente a los aislantes usuales como el poliuretano y el poliestireno extruido, comparando un mismo grosor de material.

Contras:

  • Es combustible.
  • A veces contienen sustancias químicas para retrasar la combustión.
  • Contienen, con frecuencia, fibras de poliéster de estructura.
  • Es cara.

Finalmente, se exponen las ventajas e inconvenientes de este sándwich:

Ventajas:

  • Aislamiento térmico y acústico.
  • Excelente confort estival.
  • Instalación más sencilla al haber menos elementos en el sándwich.

Inconvenientes:

  • Por las fibras de madera, se necesita la presencia de una barrera de vapor o freno de vapor, si es necesario.
  • Instalación complicada por la fijación de los tirafondos de doble fileteado.
  • Precio más elevado.
  • El grosor del sándwich empieza a ser considerable, ya es de unos 24,5 cm, sin contar con el material de cubrición.

Un inconveniente importante es la instalación, por los tornillos especiales. Estos necesitan introducirse en un ángulo de 30° con respecto al plano de la cubierta; se colocan cada x cm, según cálculos; y van alternándose el ángulo de inserción: +30°, -30°, +30°, etc. Todo esto significa que no todos los carpinteros están dispuestos a ello, lo ven complicado, etc. Pero, sobre todo, el tornillo no es barato, el de 22-24 cm vale más de 1,5 €, con descuento incluido.

En un próximo post, se tratará un sándwich in situ para cubiertas de un clima de montaña – ecológico por el interior.

Puede ver la simulación 3d clicando en este enlace:

https://skfb.ly/ywwS

 

Para manejar el dibujo 3D, he aquí unas sencillas instrucciones para manejarlo con el ratón:

  1. Pulsando continuamente el botón izquierdo y arrastrando, gira el dibujo en todas las direcciones,
  2. Pulsando continuamente el botón derecho y arrastrando, desplaza el dibujo en todas las direcciones,
  3. Moviendo la rueda del ratón hacia arriba o abajo, se hace zoom más o menos.

 

El Sándwich para climas de montaña, en altitudes de más de 900 metros, se caracteriza por disponer de una segunda cámara de ventilación entre el aislamiento y la estanqueidad para un mejor confort en verano.

En este sándwich, se coloca un aislamiento térmico y acústico de espuma rígida de poliuretano (PUR). El coeficiente de conductividad térmica del aislamiento del poliuretano es de 0,023 W/m°K. Entonces, la resistencia térmica K es de 4,3478 W/m²k para un espesor de 100 mm. Se presenta en forma de panel rígido.

Las propiedades físicas de las fibras de madera son:

Densidad (kg/m³)

32

Calor específico c (J/kg.K a 20°C)

1400

Conductividad térmica λ (W/m°K)

0.023

Resistencia al  paso del  vapor  de agua μ

Comportamiento al fuego según Euroclase

M1 a M3

Desfase térmico para una densidad de 32 kg/m³

>6 horas

El esquema de este sándwich es el siguiente:

1º.- Entarimado de pino Norte de 22 mm de espesor.

2º.- Una membrana de freno de vapor con sd = 2,3, en aquellos casos en que sea necesario.

3º.- Un aislamiento de poliuretano de 100 mm de espesor. Los paneles están recubiertos, por ambas caras, de un film reflexivo de aluminio.

4º.- Una cámara de ventilación creada con rastreles verticales de 60 x 60 mm.

5º.- Un tablero de OSB 3 machihembrado de 16 mm de espesor.

6º.- Rastreles verticales de sección trapezoidal de 80 x 40 mm.

7º.- Una membrana impermeable y transpirable bituminosa SBS elastomérica con la cara inferior autoadhesiva. La conjunción los anteriores rastreles y la membrana crean una segunda cámara de ventilación.

5º.- Rastreles horizontales de 30 x 40 mm para el material de cubrición de pizarra.

El freno de vapor tiene la función de que el vapor de agua que provenga del interior de la edificación no haga disminuir las propiedades del aislamiento. Es obligatorio en climas de montaña.

El aislamiento de poliuretano se coloca como una piel continua, sin puentes térmicos.

Sobre los rastreles trapezoidales se atornillan con tirafondos llegando hasta la estructura portante. La membrana bituminosa es flexible a muy bajas temperaturas (hasta -30° C) y, además, tapa las cabezas de los tirafondos.

Es habitual que sobre los rastreles trapezoidales, en cumplimiento de la guía francesa “Guide des couvertures en climat de montagne” (cuaderno del CSTB – Centre Scientifique et Technique du Bâtiment – nº 2267 de 1 de septiembre de 1988), se coloquen más capas:

6º.- Rastreles verticales de 30 x 40 o 30 x 20 mm.

7º.- Y un tablero de OSB 3 machihembrado de 16 mm de espesor u otro tablero hidrófugo, como soporte continuo de una cobertura de pizarras.

La transmitancia térmica U total de este sándwich es de 0,2102 W/m²k, inferior al límite de la zona E.

Haciendo la comprobación de condensaciones intersticiales con el programa WUFI (Wärme und Feuchte instationär), no las hay. Se ha considerado una temperatura interior de 20° C, con una humedad relativa del 50 % del aire, y una exterior de -10° C, con una humedad relativa del 80 % del aire.

Con este sándwich se consigue un desfase térmico de más de 6,3 horas en cuanto a la protección contra el calor estival.

Desde el punto de vista del aislante, se muestran los pros y contras:

Pros:

  • Prestaciones térmicas elevadas para un débil espesor del aislante de PUR (ganancia de hasta un 40 % en el rendimiento a igualdad de espesor).
  • La ligereza de los  paneles (un panel con un espesor de 160 mm pesa alrededor de 5 kg por m²) y formatos de hasta 2400 x 1200 mm.
  • Este material tiene una muy buena resistencia a la compresión.

Contras:

  • No es ecológico y reciclable.
  • Tóxico en caso de incendio.
  • Electroestático.
  • No es un buen aislamiento acústico, pero en conjunción con otros materiales y haciendo de sistema continuo estanco, puede incrementar el aislamiento frente a los ruidos aéreos (mínimo 7-9 dB).
  • Como panel rígido, es bastante caro.

Finalmente, se exponen las ventajas e inconvenientes de este sándwich:

Ventajas:

  • Como los paneles aislantes de PUR son reversibles, disminuye el desperdicio.
  • Mejor confort estival gracias al film de aluminio del panel de PUR.
  • La estanqueidad conseguida, sobre un soporte continuo, evita los riesgos asociados a los remontes de agua en climas de montaña.
  • La fijación de los tirafondos, aunque la densidad depende de cálculos según cargas, es más sencilla.

Inconvenientes:

  • Instalación más complicada al haber más elementos en el sándwich de cubierta.
  • Aumenta el grosor o canto del sándwich, ya que se consigue un espesor mínimo de 29 cm.
  • Por el aumento permanente de los espesores de los aislantes térmicos mejor adaptados a la difusión del vapor, se construye raramente hoy tejados con dos cámaras de aire ventiladas.
  • Precio aún más elevado.

Puede ver la simulación 3d clicando en este enlace:

https://skfb.ly/ywwY

 

Para manejar el dibujo 3D, he aquí unas sencillas instrucciones para manejarlo con el ratón:

  1. Pulsando continuamente el botón izquierdo y arrastrando, gira el dibujo en todas las direcciones,
  2. Pulsando continuamente el botón derecho y arrastrando, desplaza el dibujo en todas las direcciones,
  3. Moviendo la rueda del ratón hacia arriba o abajo, se hace zoom más o menos,

4 . Pulsando Shift + botoón izquierdo y arrastrando, se desplaza la pantalla.