Archivos para las entradas con etiqueta: aislamiento acústico

Este post es casi un ejercicio teórico, pero el fin es mostrar que se puede construir una casa de madera con aislamientos y materiales sostenibles de producción local en España y baja huella de carbono.

Toda nueva edificación, a partir del 31 de diciembre de 2020, deberá cumplir los parámetros de un Edificio de Consumo de Energía Casi Nulo (EECN, o Net Zero Energy Building). En España, el CTE (Código Técnico de Edificación) introdujo en 2013 modificaciones en su apartado de ahorro energético. Lo cierto es que todavía no hay un marco definido a nivel estatal de lo que significa una vivienda de consumo casi nulo, es decir, cada país comunitario debe regularlo. Al amparo de esta normativa han surgido diferentes certificados de calidad, la mayoría de organismos europeos. En estos momentos, el estándar más extendido en Europa es el Passivhaus alemán, de iniciativa privada.

Como se considera que, por muy restrictivo que fuera finalmente el estándar fijado en España para un ECCN, los edificios Passivhaus lo cumplirían con creces.

Por tanto, en este post analizaremos la eficiencia de un sándwich para muros con aislantes como corcho y lana de oveja y con madera contralaminada (CLT, Cross laminated Timber) como elemento estructural cumpliendo con los valores del estándar Passivhaus. Se parte de la premisa que se aislará sólo por el exterior del muro, es decir, con un sistema SATE (Sistema de Aislamiento por el Exterior), y que se dejará vista la madera contralaminada por el interior.

La superficie del lado interior de la madera contralaminada se deja sin revestir, es decir, sin barnizar, pintar o lasurar.

 

El Sándwich para muros de corcho + lana de oveja + CLT, se compone de dos partes principales:

  • un aislamiento térmico-acústico en dos capas: una semirrígida de corcho negro expandido de alta densidad de 160 kg/m³, y otra de paneles de lana de oveja de 30 kg/m³, entre vigas I-joist que, como montantes, son la subestructura de un revestimiento en madera,
  • y panales de madera contralaminada como elemento estructural.

Para la lana de oveja, se ha considerado el producto de Wool4build del grupo español Lerderval, en su composición Premium.

El coeficiente de conductividad térmica del corcho negro expandido es de 0,040-0,42 W/m°K. Entonces la resistencia térmica K es de 1,5 W/m²k para un espesor de 60 mm. Se presenta en forma de panel semirrígido y los cantos son a media madera.

Las propiedades físicas del corcho expandido son:

 

Densidad (kg/m³) 100-120
Calor específico c (J/kg.K a 20°C) 1670
Conductividad térmica λ (W/m°K) 0,40-0,042
Resistencia a la difusión del vapor de agua, μ 7 a 14
Comportamiento al fuego según Euroclase E-s1,d0
Energía gris para la fabricación, en MJ/Kg, para un espesor de 100 mm >45,50
Emisiones KgCO2e/Kg 1,727

Corcho negro expandido

El coeficiente de conductividad térmica de la lana de oveja es de 0,033 W/m°K. Entonces la resistencia térmica K es de 4,8485 W/m²k para un espesor de 160 mm. Se presenta en forma de panel flexible.

Las propiedades físicas de la lana de oveja son:

 

Densidad (kg/m³) 30
Calor específico c (J/kg.K a 20°C) 1600
Conductividad térmica λ (W/m°K) 0.033
Resistencia a la difusión del vapor de agua, μ 1-2
Comportamiento al fuego según Euroclase E
Energía gris para la fabricación, en MJ/Kg 43
Emisiones KgCO2e/Kg 0,624

Lana de oveja – Imagen de Wool4build

En comparación con la lana de roca y el poliuretano proyectado desde el punto de vista de la sostenibilidad:

 

  Lana de roca

de 120 kg/m³

Poliestireno extruido
Energía gris para la fabricación, en MJ/Kg, para un espesor de 100 mm 282,18 368,55
Emisiones KgCO2/Kg 18 54,40

El esquema de este sándwich es el siguiente, del exterior al interior:

1º.- Revestimiento en madera de 22 mm de espesor.

2º.- Cámara de aire de 30 mm creada por los rastreles verticales.

3º.- Una primera capa de aislamiento con paneles de corcho expandido de 60 mm de espesor. Los paneles tienen los cantos a media madera.

4º.- Membrana impermeable, traspirable y cortavientos, con un Sd variable (higrlovariable).

5º.- Una segunda capa de aislamiento con paneles flexibles lana de oveja de 160 mm de espesor entre los montantes.

6º.- Vigas I-joist como montantes verticales de 160 mm de canto con las alas de madera microlaminada (LVL) y alma de panel de fibras duras, sin puente térmico.

7ª.- Lámina reguladora de vapor con un Sd variable.

8ª.- Panel estructural de madera contralaminada (CLT) de 120 mm de grosor. Puede ser también de 100 mm. Sin revestir.

La primera capa de aislamiento se coloca como una piel continua, sin puentes térmicos. Y sobre ella se atornillan los rastreles verticales llegando hasta los montantes I-joist. Estos rastreles crean la cámara de ventilación. No obstante, el rastrel puede tener más altura si se desea una cámara más gruesa según los requisitos. En climas cálidos es de hasta 6 cm.

Los montantes I-joist se sujetan a la mampostería con los anclajes adecuados y accesorios para romper el puente térmico.

La transmitancia térmica U total de este sándwich es de 0,142 W/m²k, un valor inferior al límite de 0,15 para muros de fachadas del estándar Passivhaus.

Haciendo la comprobación de condensaciones intersticiales con el programa WUFI (Wärme und Feuchte Instationär), en las condiciones de climas extremos cálidos, es decir, mucho calor (> 36 °) y mucha humedad (> 76 %), hay pequeñas condensaciones donde la lámina de vapor.

Con este sándwich se consigue un desfase térmico de unas 14 horas en cuanto a la protección contra el calor estival.

Desde el punto de vista del aislamiento, se muestran los pros y contras de cada uno de los aislamientos:

Del aglomerado de corcho negro expandido.

Pros:

  • Muy poco higroscópico, poco hidrófilo y poco capilar.
  • Buena estabilidad dimensional y resistencia a la compresión.
  • Muy buen compromiso entre aislamiento térmico (caliente/frío) y acústico (tanto a los ruidos aéreos, atenuación de los ruidos aéreos de 30 dB con 30 mm de espesor, como de impacto). Es un aislante antivibratorio.
  • Tiene un grado de impermeabilidad relativamente alto a la penetración del aire y agua.
  • Es difícilmente combustible, actúa como un ralentizador del fuego y no desprende gases tóxicos.
  • No le atacan los insectos y los roedores.
  • Gran durabilidad.
  • El corcho negro es el corcho más ecológico. En su fabricación no se añaden aditivos químicos. Resumiendo, su proceso de fabricación: triturado, secado, aglomerado en autoclave con vapor de agua recalentado (el aglutinante es la suberina, una resina natural del corcho), enfriamiento con agua, secado, escuadrado y corte en paneles.
  • Gran resistencia a los agentes químicos.
  • Es renovable y totalmente reciclable.
  • Débil costo energético.

Contras:

  • Es caro.
  • Como el turno de descorche del alcornoque varía entre 9 y 14 años, durante 150 años, es un material de producción lenta.

De la lana de oveja.

Pros:

  • Excelente capacidad higroscópica: dotada de una gran permeabilidad al vapor de agua, la lana pura puede fijar el 35 % de su peso en agua, contra un 65 % de humedad relativa, sin parecer mojada y restituirla en el secado, sin perder sus propiedades aislantes. Con un contenido del 30 % de agua, la conductividad térmica λ se aumenta hasta el 0,0050 W/m*K, aproximadamente.
  • El constituyente principal es una proteína, la queratina. Ella posee la facultad de aprisionar una enorme cantidad de aire: un 80 % en la estructura hueca de sus fibras. Las escamas que recubren sus fibras están dispuestas a la manera de las tejas de un tejado y se adaptan permanentemente a las variaciones climáticas.
  • Muy buen aislamiento térmico.
  • Muy buen aislamiento acústico.
  • Es reciclable y renovable.
  • Débil costo energético.
  • No le atacan los insectos.
  • Ligereza y facilidad de instalación.
  • Desprovista de su grasa (eliminada en la fabricación durante el lavado y desengrasado), no se inflama más que a partir de 560° y es autoextinguible sin producir emanaciones tóxicas.
  • Es inerte, no produce polvo ni irritaciones. Y es alérgeno, no causa alergia cutánea ni respiratoria.
  • Se afirma que la lana puede mantener su resistencia térmica (valor R) durante 50 años.
  • Es relativamente barato.

Contras:

  • Debido a su débil densidad y su calor específico menos elevado que otros aislantes de base biológica, tiene un desfase térmico menor.
  • Se han añadido fibras de poliéster, menos del 15 %, para dar consistencia.
  • Se aplican diferentes tratamientos para garantizar la resistencia a insectos (a base de permetrinas, en dosis muy bajas) y mejorar el comportamiento ante el fuego (sales de boro, no tóxicas).

 

Finalmente, se exponen las ventajas e inconvenientes de este sándwich:

Ventajas:

  • Es uno de los sándwiches con aislantes de origen biológico con menor grosor en casas pasivas, entre 377-402 mm[1], gracias a la conductividad térmica de la lana de oveja Premium de Wool4build: λ = 0,033 W/m°K, la menor del mercado.
  • De manera natural, los aminoácidos de la lana se unen con y atrapan los elementos nocivos de formaldehído, óxido de nitrógeno y dióxido de azufre para un aire más limpio en los hogares. Entonces, la lana de oveja ayuda a absorber las emisiones de COV (formaldehídos, sobre todo) de la madera contralaminada que suceden en un periodo de 6 a 8 meses después de iniciada la construcción de la casa[2].
  • La condensación y la humedad es un problema importante en la forma en que se está construyendo actualmente, en relación a las envolventes de edificios cada vez más cerrados y herméticos en las casas de alto rendimiento, que pueden atrapar condensación y vapor de humedad en sistemas de pared sin ventilación adecuada. Hay un argumento para poner espumas sintéticas u otros aislantes en esos espacios, pero si se pone un aislamiento que no es permeable en un espacio donde la humedad no es evitable, ésta tiene vía libre hacia la estructura de madera. La lana de oveja es un material que puede “manejar” la humedad en sitios donde sea elevada, como en las zonas costeras. Además, parte de la estructura de la lana de oveja es una queratina que no favorece el crecimiento de mohos.
  • Gracias a la masividad de la construcción en madera contralaminada, “la madera es un buen aislante térmico y, al ser higroscópica, también puede amortiguar la humedad relativa interna de una habitación (esto podría usarse para reducir los requerimientos de calefacción). Además, durante la transición de la fase de vapor en el aire a la de agua unida en la pared celular de la madera, se produce una reacción exotérmica. Este intercambio de calor latente ha demostrado llevar a un cambio en la temperatura de la madera y este mecanismo podría contribuir positivamente al balance energético global de un edificio[3]. Las investigaciones del proyecto europeo Wood2new muestran que el cambio de temperatura superficial que se produce por adsorción y desorción es significativamente superior cuando la superficie de la madera no está revestida, es decir, pintada, barnizada o con acabados. Los resultados muestran que la temperatura superficial del abeto aumentó en 2,1 ° C como resultado de la adsorción de humedad. Se ha demostrado el potencial de ahorro de energía por el calor latente de adsorción de la madera. Es, pues, un medio para aumentar la eficiencia energética.
  • En España tenemos a varios fabricantes de madera contralaminada (Egoin, Sebastiá, etc.). Es decir, contamos con madera con menor huella de carbono.
  • Si no se desea el revestimiento exterior de madera, la capa de corcho sirve de soporte para un enlucido exterior adecuado (y permeable).
  • Con el CLT, no es necesario una barrera/freno de vapor en el lado interior en climas fríos.

Inconvenientes:

  • Antes se mencionó que este post es un ejercicio teórico. La causa es que los paneles de lana de oveja de Wool4build son de 50 mm de espesor y se necesitan 160 mm. Hay que estudiar si se pueden fabricar paneles de 160 mm…
  • El desfase térmico, de unas 14 horas, es bueno, superando el mínimo recomendable (unas 10-12 horas). Pero podría ser mejor. Con una regular capacidad de calor: 97 kJ/m2
  • En la fabricación de madera contralaminada se usan colas. Puede sustituirse por paneles de brettstapel o NLT (Nail Laminated Timber) fabricados en carpinterías locales. Hay paneles de CLT sin colas como los de Nur-Holz.
  • Los paneles CLT, por sí mismos, son impermeables al aire (en tests de laboratorios). Pero los huecos entre cada tabla de madera en el panel CLT crean rutas de flujo potenciales, las juntas aumentan a medida que la madera se seca y se rompe la madera, incluso si está pegada. Esto conlleva el uso recomendado de membranas de barrera de aire autoadhesivas en el exterior de los paneles (también valen las membranas líquidas flexibles). Usando las tradicionales membranas textiles es más difícil asegurar la hermeticidad y, por tanto, requiere una cuidadosa atención a los detalles mediante cintas de sellado, masillas selladoras, etc.

Resumiendo, es uno de los sándwiches para muros más ecológicos, con materiales locales y de probada eficacia. La lana de oveja es un aislante interesante, como dijo un fabricante francés de lana de oveja, Naturline: “Nuestros productos se han testado en animales”.

 

Puede ver la simulación 3d clicando en este enlace:

https://skfb.ly/6oNrN

Para manejar el dibujo 3D, he aquí unas sencillas instrucciones para manejarlo con el ratón:

  1. Pulsando continuamente el botón izquierdo y arrastrando, gira el dibujo en todas las direcciones,
  2. Pulsando continuamente el botón derecho y arrastrando, desplaza el dibujo en todas las direcciones,
  3. Moviendo la rueda del ratón hacia arriba o abajo, se hace zoom más o menos.

 

[1] Depende de si se consideran 95 o 120 mm de grosor de madera contralaminada. Incluso, menos, si se prescinde del revestimiento de madera y se opta por un enlucido sobre el corcho, entonces, quedaría en unos 330 o 355 mm.

[2] Véase un post anterior: Wood2new – Madera y bienestar.

[3] Véase ídem.

Cuatro empresas del Tirol del Sur (Italia), Aster Holzbau, Moser Holzbau, Habicher Holzbau y Ligna Construct, de construcción en madera han publicado una guía titulada “Aislamiento acústico en los edificios de madera – Diseño acústico de los edificios en madera”, en italiano y alemán.

 

Las cuatro empresas que participan en el proyecto definen, primero, las terminologías más importantes en el aislamiento acústico. Inmediatamente después de la muestra de los límites de aislamiento de Italia, Austria y Alemania: por lo tanto, una tabla con los valores límite para planificar el aislamiento de sonido con seguridad es el corazón del folleto.

 

El documento describe las características de aislamiento de los diversos componentes estructurales, como tabiques, paredes exteriores y forjados. Además se comparan diferentes sistemas de construcción. Todos los valores reportados para los diversos tipos se originan a partir de mediciones en edificios ya completos.

Ejemplo de composición de un forjado de madera

Ejemplo de composición de un forjado de madera

 

En:

http://tis.bz.it/it/cluster/legno-tecnica/doc/pdf/schallschutz_it

Más en:

https://tis.bz.it/it/cluster/legno-tecnica/news/isolamento-acustico-nelle-costruzioni-in-legno-la-guida?set_language=it

Con este post sigue una serie en los que se actualizarán o modificarán los anteriores sándwich de cubierta ideal con el propósito de cumplir con los valores orientativos de los parámetros característicos de la envolvente térmica (en este caso, una cubierta) para el predimensionado de soluciones constructivas en uso residencial. Dichos valores están en la tabla E.1 del apéndice E del Documento Básico HE Ahorro de energía del Código Técnico de la Edificación, publicado en el BOE el 12 de septiembre de 2013.

En el sándwich entre pares: XPS + aislamiento acústico tenemos el XPS y un aislamiento acústico como la lana mineral con una densidad de unos 15 kg/m³. La principal característica de este sándwich es su economía.

Las propiedades físicas del XPS son:

 

Densidad (kg/m³) 34
Calor específico c (J/kg.K) 1450
Conductividad térmica λ (W/m°K) 0.034
Resistencia a la difusión del vapor de agua μ 120
Comportamiento al fuego según Euroclase E
Desfase en horas, con un espesor de 8 cm 2,182

 

Las propiedades físicas de la lana mineral son:

 

Densidad (kg/m³) 15
Calor específico c (J/kg.K a 20°C) 800
Conductividad térmica λ (W/m°K) 0.036
Permeabilidad al paso del vapor de agua μ <1
Comportamiento al fuego según Euroclase A1
Desfase en horas, con un espesor de 20 cm 6

 

La lana mineral se presenta en forma de panel semirrígido.

El esquema de este sándwich es el siguiente:

1º.- Pares (o cabrios) como estructura portante.

2º.- Entarimado de pino Norte de 22 mm de espesor, como friso.

3º.- Una membrana de freno de vapor con sd = 2,3, en aquellos casos en que sea necesario. Colocada casi alrededor de los pares.

4º.- Aislamiento de lana mineral con un espesor de 160 mm, colocado entre los pares.

5º.- Tablero OSB 3 hidrófugo de 15 mm de espesor.

6º.- Una lámina de polietileno reticulado como aislamiento acústico contra los ruidos de impactos.

6º.- Aislamiento de XPS (poliestireno extruido) de 60 mm de espesor, cuyos paneles se colocan paralelos al alero.

7º.- Rastreles verticales de 30 x 40 mm.

8º.- Membrana impermeable y transpirable tipo Tyvek, con un sd=0,02.

 

El freno de vapor tiene la función de que el vapor de agua que provenga del interior de la edificación no haga disminuir las propiedades aislantes de la lana mineral.

El aislamiento XPS se coloca como una piel continua, sin puentes térmicos. Para ello es conveniente que se coloquen dos capas que sumen el espesor requerido y, además, deben disponerse contrapeadas, para no hacer coincidir las juntas de una capa con las de la otra. Se mejora todavía más la continuidad del aislamiento si los cantos de los paneles tienen un perfilado en L o un machihembrado.

Sobre el XPS, se atornillan los rastreles de 30 x 40 mm llegando a los pares.

Estos rastreles crean la cámara de ventilación. No obstante, el rastrel puede tener más altura si se desea una cámara más grande.

Luego se coloca la membrana sobre el aislamiento, disponiéndola encima de los rastreles verticales y dejándola holgada como formando valles entre aquéllos.

La transmitancia térmica U total de este sándwich es de 0,183 W/m²k, inferior al límite de la zona E (0,19).

Haciendo la comprobación de condensaciones intersticiales con el programa WUFI (Wärme und Feuchte Instationär), no las hay. Se ha considerado una temperatura interior de 20° C, con una humedad relativa del 50 % del aire, y una exterior de -10° C, con una humedad relativa del 80 % del aire.

Con este sándwich se consigue un desfase térmico de 10,8 horas en cuanto a la protección contra el calor estival.

Desde el punto de vista de estos dos aislamientos, se muestran los pros y contras:

Pros:

  • La lana mineral es un muy buen aislamiento térmico y de medio a buen aislamiento acústico, no es hidrófilo y es imputrescible, inerte e incombustible.
  • La lana mineral es muy permeable al vapor de agua.
  • La lana mineral procede de recursos no renovables pero abundantes.
  • El XPS tiene una alta resistencia mecánica.
  • El XPS tiene una muy buena durabilidad y estabilidad dimensional.
  • La lana mineral es uno de los materiales más baratos del mercado.

Contras:

  • El XPS no es ecológico.
  • El XPS es tóxico en caso de incendio.
  • El XPS y la lana de roca no tienen ninguna capacidad higroscópica.
  • EL XPS electroestático.
  • El XPS no es transpirable y no capilar.
  • EL XPS tiene una muy débil capacidad de protección contra el calor.
  • El XPS es atacable por los roedores.
  • La lana mineral de débil densidad es fácilmente degradable por los roedores.
  • La lana mineral tiene una mala estabilidad en el tiempo.
  • La lana mineral tiene una contribución mediocre conrea el calor estival.
  • La eficiencia de la lana mineral se degrada en presencia de la humedad a causa de una puesta en obra negligente.
  • La lana mineral tiene un mal balance del carbono y energía gris elevada.
  • La lana mineral contiene fibras respirables irritantes a la hora de manipular los paneles.

Finalmente, se exponen las ventajas e inconvenientes de este sándwich:

Ventajas:

  • La baja absorción de agua y la resistencia al hielo-deshielo (para evitar pérdidas de resistencia mecánica) del XPS lo hacen ideal ya que el aislante se encuentra debajo de la teja. Entonces, es un punto a favor para hacer una cubierta invertida, ya que hay versiones especiales de paneles para recibir directamente, con adhesivos especiales, las tejas cerámicas.
  • Los tirafondos que atornillan los rastreles de 30 x 40 mm pueden ser más cortos y más baratos, de 6/8 x 180 mm (22 + 80 + 80 mm).
  • Amortiguación del nivel de ruido de impacto producido por agentes atmosféricos.
  • Muy buena relación entre aislamiento térmico-acústico y precio.
  • Excelente confort durante el verano, ya que el desfase es superior a las 10 horas recomendables.
  • Como la barrera de vapor está colocada sobre los pares, no es perforada por los clavos del friso interior.
  • Menor superficie a barnizar, ya que los pares, que aumentarían la superficie por su desarrollo, están ocultos.
  • Es bastante económico.

 

Inconvenientes:

  • No se respeta la regla 5/1 del orden de los aislamientos según la permeabilidad al vapor de agua: cada vez más abiertos según se va hacia el exterior de la envolvente.
  • El excelente confort durante el verano se consigue con grandes espesores de aislamiento.
  • Este sándwich está supeditado que la estructura portante no sea vista desde el interior. Tal vez, sea éste el principal inconveniente.

 

Puede ver la simulación 3d clicando en este enlace:

https://skfb.ly/BIHo

Para manejar el dibujo 3D, he aquí unas sencillas instrucciones para manejarlo con el ratón:

  1. Pulsando continuamente el botón izquierdo y arrastrando, gira el dibujo en todas las direcciones,
  2. Pulsando continuamente el botón derecho y arrastrando, desplaza el dibujo en todas las direcciones,
  3. Moviendo la rueda del ratón hacia arriba o abajo, se hace zoom más o menos.

 

Se visualiza en navegadores que soporten WebGL, conmo Firefox y Chrome.

 

©Madera Estructural

 

 

Con este post sigue una serie en los que se actualizarán o modificarán los anteriores sándwich de cubierta ideal con el propósito de cumplir con los valores orientativos de los parámetros característicos de la envolvente térmica (en este caso, una cubierta) para el predimensionado de soluciones constructivas en uso residencial. Dichos valores están en la tabla E.1 del apéndice E del Documento Básico HE Ahorro de energía del Código Técnico de la Edificación, publicado en el BOE el 12 de septiembre de 2013.

En el Sándwich XPS + aislamiento acústico tenemos el XPS y un aislamiento acústico como la lana mineral con una densidad de unos 15 kg/m³.

Las propiedades físicas del XPS son:

 

Densidad (kg/m³) 34
Calor específico c (J/kg.K) 1450
Conductividad térmica λ (W/m°K) 0.034
Resistencia a la difusión del vapor de agua μ 120
Comportamiento al fuego según Euroclase E
Desfase en horas, con un espesor de 8 cm 2,182

 

Las propiedades físicas de la lana mineral son:

 

Densidad (kg/m³) 15
Calor específico c (J/kg.K a 20°C) 800
Conductividad térmica λ (W/m°K) 0.036
Permeabilidad al paso del vapor de agua μ <1
Comportamiento al fuego según Euroclase A1
Desfase en horas, con un espesor de 20 cm 6

 

La lana mineral se presenta en forma de panel semirrígido.

 

El esquema de este sándwich es el siguiente:

1º.- Pares (o cabrios) como estructura portante.

2º.- Entarimado de pino Norte de 22 mm de espesor.

3º.- Una membrana de freno de vapor con sd = 2,3, en aquellos casos en que sea necesario.

4º.- Aislamiento de XPS con un espesor de 80 mm.

5º.- Rastreles horizontales de 50 x 80 mm, paralelos al alero.

6º.- Aislamiento de lana mineral de 80 mm de espesor, cuyos paneles se colocan paralelos al alero.

7º.- Rastreles verticales de 30 x 40 mm.

8º.-  Membrana impermeable y transpirable tipo Tyvek, con un sd=0,02.

 

El freno de vapor tiene la función de que el vapor de agua que provenga del interior de la edificación no haga disminuir las propiedades aislantes de la lana mineral.

 

El aislamiento de lana mineral se coloca entre rastreles de 50 x 80 mm. Y éstos se atornillan hasta los pares o correas de la estructura.

El aislamiento XPS se coloca como una piel continua, sin puentes térmicos. Para ello es conveniente que se coloquen dos capas que sumen el espesor requerido y, además, deben disponerse contrapeadas, para no hacer coincidir las juntas de una capa con las de la otra. Se mejora todavía más la continuidad del aislamiento si los cantos de los paneles tienen un perfilado en L o un machihembrado.

 

Sobre el aislamiento de lana mineral, se atornillan los rastreles de 30 x 40 mm a los rastreles de 50 x 80 mm[1].

 

Estos rastreles crean la cámara de ventilación. No obstante, el rastrel puede tener más altura si se desea una cámara más grande.

 

Luego se coloca la membrana sobre el aislamiento, disponiéndola encima de los rastreles verticales y dejándola holgada como formando valles entre aquéllos.

 

La transmitancia térmica U total de este sándwich es de 0,209 W/m²k, próximo al límite de la zona E (0,19). No obstante, debe hacerse un estudio global del edificio para comprobar si cumple con las nuevas exigencias del CTE.

Haciendo la comprobación de condensaciones intersticiales con el programa WUFI (Wärme und Feuchte Instationär), no las hay. Se ha considerado una temperatura interior de 20° C, con una humedad relativa del 50 % del aire, y una exterior de -10° C, con una humedad relativa del 80 % del aire.

Con este sándwich se consigue un desfase térmico de 5,5 horas en cuanto a la protección contra el calor estival.

 

Desde el punto de vista de estos dos aislamientos, se muestran los pros y contras:

Pros:

  • La lana mineral es un muy buen aislamiento térmico y de medio a buen aislamiento acústico, no es hidrófilo y es imputrescible, inerte e incombustible.
  • La lana mineral es muy permeable al vapor de agua.
  • La lana mineral procede de recursos no renovables pero abundantes.
  • El XPS tiene una alta resistencia mecánica.
  • El XPS tiene una muy buena durabilidad y estabilidad dimensional.
  • La lana mineral es uno de los materiales más baratos del mercado.

Contras:

  • El XPS no es ecológico.
  • El XPS es tóxico en caso de incendio.
  • El XPS y la lana de roca no tienen ninguna capacidad higroscópica.
  • EL XPS electroestático.
  • El XPS no es transpirable y no capilar.
  • EL XPS tiene una muy débil capacidad de protección contra el calor.
  • El XPS es atacable por los roedores.
  • La lana mineral de débil densidad es fácilmente degradable por los roedores.
  • La lana mineral tiene una mala estabilidad en el tiempo.
  • La lana mineral tiene una contribución mediocre.
  • La eficiencia de la lana mineral se degrada en presencia de la humedad a causa de una puesta en obra negligente.
  • La lana mineral tiene un mal balance del carbono y energía gris elevada.
  • La lana mineral contiene fibras respirables irritantes a la hora de manipular los paneles.

 

Finalmente, se exponen las ventajas e inconvenientes de este sándwich:

Ventajas:

  • La baja absorción de agua y la resistencia al hielo-deshielo (para evitar pérdidas de resistencia mecánica) del XPS lo hacen ideal ya que el aislante se encuentra debajo de la teja. Entonces, es un punto a favor para hacer una cubierta invertida, ya que hay versiones especiales de paneles para recibir directamente, con adhesivos especiales, las tejas cerámicas.
  • Los tirafondos que atornillan los rastreles de 50 x 80 mm pueden ser más cortos y más baratos, de 6/8 x 260 mm (22 + 80 + 80 mm), al contrario que sucede con un aislante como piel continua de espesor elevado.
  • Se respeta la regla 5/1 del orden de los aislamientos según la permeabilidad al vapor de agua: cada vez más abiertos según se va hacia el exterior de la envolvente.
  • Muy buena relación entre aislamiento térmico-acústico y precio.

Inconvenientes:

  • Los dos aislamientos no son eficaces en la protección contra el calor.
  • Cuando se trabaja en la cubierta hay que tener cuidado de pisar sobre los rastreles.
  • Hay un puente acústico.

 

El principal inconveniente es la protección contra el calor de ambos aislantes debido a una característica poco conocida: la capacidad de acumulación, que mide la aptitud del material en atenuar las diferencias extremas en función del ritmo día/noche. Es decir, estos aislantes presentan un mal desfase térmico, lo cual restituyen el calor más pronto hacia el interior de la vivienda favoreciendo los picos de calor en verano (interior más caluroso).

 

El otro inconveniente es el puente acústico que crea el rastrel de 50 x 80 mm porque pone en contacto el XPS con el entarimado. La solución es colocar otro aislante como la lana de roca como una piel continua de menos espesor, pero con el espesor suficiente para el aislamiento acústico de la cubierta. Entonces, el espesor del aislante XPS será mayor. No obstante, hay que hacer un cuidadoso estudio de la eficiencia térmica y acústica de este sándwich. Otra solución, es adherir a la cara inferior de los rastreles bandas de un aislante como el corcho, fieltro de cáñamo, etc.

 

Puede ver la simulación 3d clicando en este enlace:

https://skfb.ly/AYDA

Para manejar el dibujo 3D, he aquí unas sencillas instrucciones para manejarlo con el ratón:

  1. Pulsando continuamente el botón izquierdo y arrastrando, gira el dibujo en todas las direcciones,
  2. Pulsando continuamente el botón derecho y arrastrando, desplaza el dibujo en todas las direcciones,
  3. Moviendo la rueda del ratón hacia arriba o abajo, se hace zoom más o menosSe visualiza en navegadores que soporten WebGL, conmo Firefox y Chrome.

 

Se visualiza en navegadores que soporten WebGL, conmo Firefox y Chrome.

 

[1] El hecho de colocar horizontalmente los rastreles de 50 x 80 del aislante permite dos cosas: primero, no influye la distancia entre ejes de pares y, segundo, colocar los rastreles verticales de 30 x 40 con la distancia entre ejes que deseemos.

Si la estructura portante fueran correas, los rastreles del aislamiento se colocarían verticalmente, pero con más sección, es decir, hay que sumar al espesor del aislante de lana mineral la altura de la cámara de ventilación. Entonces, estos rastreles serían de 50 x 110/120 mm. Así, se ahorra la colocación de los rastreles de 30 x 40 mm.

Por lo tanto, estos rastreles verticales cumplen dos funciones: colocar la lana mineral y crear la cámara de ventilación, y como soporte de los rastreles horizontales de la cobertura de teja o pizarra.